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INTRODUCTION

Thomas L. Liston, Mechanical
Engineer, is one of those engineers
who wants to know what the laws of
nature say about whatever it is in
which he happens to be interested.
When he took up archery, he was
surprised to find very little
published on archery engineering.
The last authoritative book on the
subject c.re out in the 1940s. So,
being curicus, Mr. Liston set out to
compute virtually everything that
can be computed about archery.
Although he is a competent target
archer and bowhunter, he makes a
living as a consulting mechanical
engineer specializing in heating,
ventilation and air conditioning.
His engineering education includes a
Bachelor of Science in Mechanical
Engineering from the University of
California, Berkeley.

Liston simply set out to put
numbers on every aspect of archery
which was readily computed. He drew
upon classic statics, dynamics,
fluid flow, aerodynamics, strength
of materials and statistics. In
doing so, he basically wrote a
primer. The simple things, such as
draw work, hysteresis, virtual mass,
and arrow energy are only simple
when someone explains them in a
simple way. The tough things, such
as bow shape versus energy storage
and recovery, and such as the
dynamics of arrow vibration during
launch, were taken only as far as
simple analysis would permit. The
intermediate things, such as the
calculation of arrow friction and
its effect on trajectories and
energy loss were taken as far as the
author's mastery of applicable math
would permit.

The engineer-archer will
doubtlessly find it interesting to
see which laws of nature explain
which feature of archery, and to see
which things are too complicated to
readily explain. The author left

specific challenges to interested
engineers to solve particular
problems which he, the author, could
not solve. The inquisitive non-
engineer archer will learn a lot
about engineering in reading this
book. Or, if not interested in
engineering, an archer may simply
read the narrative for conclusions.

For the first time in history,
graphs showing how far an arrow will
go when fired at any particular
velocity are published. The
corresponding launch velocities
required to achieve particular
maximum ranges are also published
for the first time. These charts
are the compilation of months of
computer runs.

L homen L Zito V€

Thomas L. Liston, P.E.
Mechanical Engineer
January 1988

About the Second Edition:

Chapter 13, "Penetration", has
been greatly expanded, mainly due to
the urging of Dan Quillian,
President of Archery Traditions.
November 1989.

About the Third Edition

Chapter 3 on Virtual Mass has
been updated to incorporate the
latest concepts developed by Norb
Mullaney. dJune 1990.
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Chapter 1 ... BOW ENERGY INPUT:

DRAW _WORK

The archer does work when he
draws his bow. The bow does work on
the arrow when the shot is fired.
Understanding the relationships
between the work done by the archer
when drawing and the work done by
the bow when shooting is important.
If the bow and arrow combination
were 100% efficient, all of the
archer's effort would translate into
arrow energy. As it turns out,
somewhere in the neighborhood of 75%
of the archer's work does propel the
arrow. The lost energy goes partly
into internal friction within the
bow, which is called "hysteresis".
This often amounts to around 8%.
The remainder of the lost energy is
found 1in those parts of the bow
which are still in motion at the
moment of separation of arrow from
string.

To measure the amount of work
done by the archer, a spring scale
and an arrow marked in 1inches of
draw is needed. See photo. The
pull in pounds at each inch of draw
can then be measured. When the pull
forces at each inch of draw are
added up, they tell the amount of
work done. The dimensions are
"inch-pounds". Engineers prefer to
talk of "foot-pounds", so the inch-
pounds are divided by 12 to get
foot-pounds. When a person lifts a
pound of butter up one foot high, he
imparts one foot-pound of work to
the butter.

RECURVE &/or LONGBOWS

Figure 1-1 shows the data
collected for a recurve bow, A
blank form for the reader's use 1is
provided for use with his own
longbow or recurve. Figure 1-2
shows a plot of the same data. A
blank form upon which to plot is
also provided.
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A recurve bow (and/or a
longbow) requires ever-increasing
force as the draw length s

increased. The let-down forces are
a little less than the draw forces,
but it requires fancy
instrumentation to measure the
difference. The forces measured
when using a spring scale and slowly
changing lengths s somewhere
between draw force and Tlet-down
force. The form provided for
recurve &/or longbows ignores the
differences.

The area under the curve
represents the total energy the
archer has expended while drawing
the bow. Instructions with the form
for data gathering tell how to
compute this area. The reader who
is comfortable with computing areas
under curves will devise his own
procedures. Were the force=-draw
curve of a Tlong bow or recurve
exactly a straight 1ine, a single
computation would suffice. An
excellent approximation can be made
by drawing a straight line through
the data, aligning the straight line
to make the area under it equal to
the area under the actual line. See
the straight 1ine in Figure 1-2.

COMPOUND BOWS

Compound bows are better at
accepting energy than are recurve
bows. The force required to draw a
compound builds up more rapidly.
The required force reaches a peak
during mid-draw and then diminishes.
The "let-off" is typically 50% or
so, which diminishes the energy
being stored somewhat. The net
result, though, is that --- for the
same peak draw force --- a compound
accepts more energy than a recurve.
See Figures 1-3 & 1-4 for data on



the author's compound hunting bow.

When measuring peak draw force
on a spring scale, the difference
during prompt draw and during prompt
let-down can be noticed and
measured. The difference represents
the energy Tlost to internal
friction, called "hysteresis". When
slowly drawing a compound on a
spring scale, the maximum draw force
falls between the prompt draw and
prompt let-down forces. For
instance, the author's hunting bow
registers 73%# during prompt draw,
69# during prompt let-down, and 72#
during gradual measurement. Because
these differences can be seen on an

ordinary spring scale, it  is
possible to compute the Low's
hysteresis. For a recurve bow, this

separate identification of the bow's
hysteresis cannot be done without
resorting to sophisticated
instrumentation.

The form for compound bows
makes use of the measurability of
hysteresis. The bow's "virtual
mass" (which 1is defined in Tlater
chapters) is computed differently
for the compound bow. Input energy
(which is slightly higher than
measured statically) and recoverable
energy (which is slightly lower than
measured statically).

PEAK DRAW:

The general shape of a bow's
draw-force curve stays about the
same regardless of peak draw force.
The curve for a 60# long bow and for
a 30# long bow look exactly alike
except for the numbers. Similarly,
adjustable-force compound bows have
similar looking curves regardless of
power setting. The result is that
the amount of energy stored is a
constant multiplier of the peak draw
force. The fraction of energy Tlost
to hysteresis is almost constant,
regardless of force setting.
Similarly, as will be explained in
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the chapter on "virtual mass", the
fraction of energy left behind when
the arrow is launched changes hardly
at all.

Consequently, for a given
adjustable bow, the amount of energy
stored is a direct function of the
peak draw force. Arrow velocity
(assuming the same arrow is shot) is
a square root function of the
energy. Thus, adjusting a bow
upwards from 40# to 44# would
increase the stored energy 10%. The
square root of 1.10 is 1.049 and
thus a 10% increase of stored energy
would yield a 4.9% increase in arrow
velocity.

A word of caution, however.
That rule applies to small
increases. For large increases,
such as from 40# to 60#, different
arrows would be recommended. For
instance, for a 40 pound compound
bow shooting a 30" Tlong hunting
arrow, Easton recommends a size 2016
weighing 507 grains. At 60 pounds
the recommendation is a size 2117
weighing 551 grains. Thus some of
the speed increase would be
sacrificed for a heavier arrow. For
how to calculate exactly what the
speed change would be, see the
chapter entitled "virtual mass".



Above left: Son Alex Liston
drawing 55# Martin Cougar
target compound.

Above right: Author Tom Liston
drawing 70# HoBf Rambo
hunting compound.

Left: Spring scale and arrow
marked at 1" intervals,

Page 1_3



RECURVE OR LONGBOW ENERGY CALCULATION FORM

Bow Identification & Set-up Data:

Make: Ben Pearson | woge1: #304 Kecurve takce-dpwan

Serial nr. or other I.D.: Fiberqlagj 7q4g. qbovt {;ﬁSﬂ .
Brace height: q* . Weight of bow"s mass: :
Upper 1limb, turns out (adjustable bows only): _—

Lower limb, turns out (adjustable bows only):

Date data taken: 3-23-8%6 . Bow owned by: Aflex LI'S‘I'm"!

Spring Scale Data:
Make: Hansen . Model: 8910 . Range: O - [100#
Date calibrated: New ‘86 . Corrections None known

Bow Test Data:

‘ 4] "
1. Draw force = 48'5- # at draw length of 2?‘1‘ inches.
2. Draw lengths & corresponding draw weights:
0" 10" 4 20" A% 30" _50(Igneve)
1" 11“ j’ 21" a 31"
2l1 12!! [a 22" 5 32“
3|| 13“ 13 23" _E 33“
4ll 14“ _"5 24" 32 34"
5ll 15" _‘F:Z 25“ 33 35“
61[ 16" !2 26" 0 36"
7 i 17" & 27" ??3 37
8" 18“ 2 28" ‘fg i 38"
gll 5 lgll zgu Mas?) 39"

3. Col. sums: @ *+ 155 + 364 -+ o » =

* Add per rules; do not add area beyond draw length.

4, Sum of 4 columns in line 7: 5l6% inch=-1bs.
5. Stored energy: (Divide line 8 by 12: foot-pounds.
6. Stored energy per peak draw force (Line 5 divided by Line 1):

0.89 foot-pounds per pound.

Virtual Mass Calculation (If arrow's weight & speed known.)

7. Arrow's weight 470 grains. For 191 x 29
8. Arrow's velocity (48 ft/sec2
9. Arrow's energy = kmV< =

line 7 x line 8 x line 8 divided by 450,800 = &&s8 ft_1ps.
10. Ratio, arrow energy to input energy (line 9/1ine 5): Q.53 .
11. Ratio, bow's virtual mass to arrow's weight =

(1 - line 10)/1ine 10 = _O.883 :

12. Bow's virtual mass = line 11 x line 7 = 415 grains.

Figure 1-1 ... Recurve Force-Draw Data

Pagc‘"4



. FORCE - DRAW PLOT
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Figure 1-2 ... Recurve Force-Draw Plot Page lwlly



COMPOUND BOW ENERGY CALCULATION FORM

Bow Identification & Set-up Data:

Make: Heou t . Model: RAMPO . Wheel: ROUNDP
Serial nr. or other 1.D.: 55/70 NOMINAL RARTING

Brace height: . Weight of bow's mass: 7

Draw length (Use length at which force is minimum): _29Z
Upper 1imb, turns out (adjustable bows only):

Lower limb, turns oyt (adjustable bows only): .
Date data taken: 22[6(?7 . Bow owned by: T om LlS')‘o'ﬂ
Spring Scale Data:

Make: HANSEN . Model: 84910 . Range: O - (00F
Date of last calibration: New ‘86 . Corrections needed: None Known .

Bow Test Data: 31_ ®
1. Peak draw force during prompt draw: 122%™,
2. Peak draw force during prompt let-down: 69 * .
3. Hysteresis loss (Subtract line 2 from line 1.): 4L &,
4. Fraction loss to hysteresis (Divide 1ine 3 by line 1.): 0.06/1 .
5. Percentage loss to hysteresis (Multiply Tine 4 by 100.): GC.1 7.
6. Draw lengths & corresponcding draw weights:

0" 10" 20" 675 0" _35%

g 11" % 21" D 31"

2“ 12“ 22" 12 32“

3" 13“ 4 23" 33“

3" e — T

g 15" g 25" t 35"

5][ 16" 26[] 36"

?ll 1?!1 !E 2?" 5D 371!

R | L 1 28" "

gll 19" i 29" 3g"
7. Col. sums: _@ 51'74'!;‘»‘- 59 ¢

* Add per rules; do not add area beyond draw length, L
8. Sum of 4 columns in line 7: 853'::- inch-1bs.
9. Stored energy: (Divide line 8 by 12: 7. % foot-pounds.
10. Recoverable energy (Line 9 x line 2 divide by line 6's peak draw:

72.4 » (62/72) = é‘?.‘/ foot-pounds.
11. Stored energy per peak draw force (Line 10 divided by Line 1):

69.4/13.5 = O.944 foot-pounds per pound.

Virtual Mass Calculation (Calculate if arrow's weight & velqcity are known.)
12. Arrow's weight 54 3  grains, as measured by scalée "
13. Arrow's velocity 2l ft/sec, as determined by meter §
14, Arrow's energy = %mV< = line 12 x line 13 x line 13 divided by 450,800 =

543 x 2|4 x2|Y =+ 450,800 = 55, 2 foot-pounds.
15. Ratio, arrow energy to recoverable energy (1ine 14 / line 10): O,7495 .
16. Ratio, bow's virtual mass to arrow's weight (1 - line 15)/line 150,26 .
17. Bow's virtual mass = line 16 x line 12 = 140 grains.

Figure 1-3 ... Compound Force-Draw Data
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DRAW FORCE
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Figure 1-4 ...

Compound Force-Draw Plot
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RECURVE OR LONGBOW ENERGY CALCULATION FORM

Bow Identification & Set-up Data:

Make: . Model: F
Serial nr. or other I.D.:

Brace height: . MWeight of bow's mass:

Upper 1imb, turns out (adjustable bows only): .

Lower limb, turns out (adjustable bows only): .

Date data taken: . Bow owned by: @

Spring Scale Data:
Make: . Model: . Range: :
Date calibrated: . Corrections

Bow Test Data:

1. Draw force = # at draw length of inches.
2. Draw lengths & corresconding draw weights:

GH 10“ 20" 3"}"
1” 11" 21!! 31"
2“ 12“ 22“ 32"
3" 13* 23" 33"
4" 14" 24“ 34"
5" 15" 25" 35“
6ll 16" 26" 36"
? 1] l?ll 27" 3?”
SII 18" 28" 38“
gll 19“ 29]! 39"
3. Col. sums: *
* Add per rules; do not add area beyond draw length,.
4, Sum of 4 columns in line 7: inch=1bs.
5. Stored energy: (Divide 1ine 8 by 12: foot-pounds.
6. Stored energy per peak draw force (Line 5 divided by Line 1):

foot-pounds per pound.

Virtual Mass Calculation (If arrow's weight & speed known.)

7. Arrow's weight grains.
8. Arrow's velocity ft/sec
9, Arrow's energy = LkmV¢& =

line 7 x line 8 x line 8 divided by 450,800 = ft-1bs.
10. Ratio, arrow energy to input energy (line 9/1line 5): :
11. Ratio, bow's virtual mass to arrow's weight =

(1 - 1line 10)/1ine 10 = .

12. Bow's virtual mass = line 11 x line 7 = arains.

Pg.. (=8



COMPOUND BOW ENERGY CALCULATION FORM

Bow Identification & Set-up Data:

Make: . Model: . Wheel: 4
Serial nr. or other I1.D,: :
Brace height: . Weight of bow's mass: .

Draw length (Use length at which force is minimum.):
Upper limb, turns out (adjustable bows only):

Lower 1imb, turns out (adjustable bows only):
Date data taken: . Bow owned by:

Spring Scale Data:
Make: . Model: . Range:
Date of last calibration: . Corrections needed:

Bow Test Data:

1. Peak draw force during prompt draw: g
2. Peak draw force during prompt let-down: "
3. Hysteresis loss (Subtract line 2 from line 1.): ‘
4, Fraction loss to hysteresis (Divide line 3 by 1ine 1.): 5
5. Percentage loss to hysteresis (Multiply Tine £ by 100.):
6. Draw lengths & corresponding draw weights:

0" 10" 20" 30"

llr 1]" 21" 31"

on 12" 22" 32"

3Il 13" 23" 33“

4“ 14" 24" 34"

5“’ 15" 25" 35"

6“ 16" 26" 36"

? n 17 1L 27 " 37 n

8“ 18" 28“ 38"

gll lgll 29" 39"

7. Col., sums:
* Add per rules; do not add area beyond draw length.

8, Sum of 4 columns in line 7: inch-1bs.

9. Stored energy: (Divide line 8 by 12: foot-pounds.

10. Recoverable energy (Line 9 x line 2 divide by line 6's peak draw:

foot-pounds.

11. Stored energy per peak draw force (Line 10 divided by Line 1):

foot-pounds per pound.

Virtual Mass Calculation (Calculate if arrow's weight & velocity are known.)
12. Arrow's weight grains, as measured by
13. Arrow's velocity ft/sec, as determined by
14, Arrow's energy = %mvz = Jipe 12 x 1ine 13 x line 13 divided by 450,800
foot-pounds.
15. Ratio, arrow energy to recoverable energy (1ine 14 / Tine 10):
16, Ratio, bow's virtual mass to arrow's weight (1 - line 15)/1ine 15 -
17, Bow's virtual mass = line 16 x line 12 = qrains.

Pq (-4



Rules for addition of first & last increments of draw:

A. First non-zero measurement is used without correction,

B Note shooting draw length. A1l measurements which are 1/2" or more
shorter than draw length are added without correction.

C. Compute work done drawing last fraction of an inch by computing what
fraction of an inch is involved and what average force is involved.

Example:

Draw length = 294"

Force at 28" = 45# (= average from 27%" to 28%").
Force at 29" = 48# (= average from 28%" to 29%").
Force at 30" = 50#

Final draw length = 294" - 284" = 3/4"
Average force over final 3/4" = 46.,5% @ 27%" + % x (50-48)# = 47,04,
Eneroy = force x lenath = 47.0# x 3/4" = 35% inch-pounds.

Note that computing the correct final force is complicated but important
with long bows. With compound bows, the final force stays constant and thus
need not be computed, as tka final force is in the "bottom of the valley",

With either type bow, the final lenqth of draw must be computed as
illustrated in the example. A half inch difference in draw will impart a
noticeably different velocity to an arrow. The difference is much greater
for 2 long bow than for a compound bow,

To be technically correct, the first fraction of an inch of draw should be

correctec in the same way as the final. The forces are so small during the
first inch of draw that the failure to be exact causes no significant error,

BowForm 1 &/or 2 Rules May 1, 1987 l’g- { =jo
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Chapter 2 ... BOW ENERGY LOSSES: HYSTERESIS

The author notes that when
promptly drawing his compound on a
spring scale, the bow developes a
peak of 73%# when drawing, but
developes only about 69# when
letting it back down promptly. From
this I conclude that this particular
bow can deliver no more than
69/73%ths of the energy put into it,
even when given all the time in the
world to do it. This hints at an
energy loss of 4%/73% or 6.1%, but
I place no confidence in the
accuracy of such a crude measurement
except to note that the concept of
an energy loss is indeed noticeable
on a spring scale. Note in Figure
1-3 that peak pull is 72# when
gradually increased, which s
between 69# and 73%#.

The loss of energy between draw
and let-down is due to internal
friction within the bow, which is
called "hysteresis". Oneida Labs,
Incorporated's published data on
their Oneida Eagle Bow dated 11-11-
82 shows a loss of 7.6% to 8.2%.
Loss of 5% to 20% were reported by
Paul E. Klopsteg in "Physics of Bow
and Arrows published in the American
Journal of Physics in August 1943.
He was talking about bamboo bows.
He measured the draw and Tlet-down
pulls using a movie camera taking 16
frames per second. Figure 2-1 is a
reproduction of Mr. Klopsteg's
results,

The data shown for the author's
bow does not illustrate hysteresis,
because it was taken so slowly that
the difference between draw and let-
down was totally muddied. Were the
same bow tested as did Mr. Klopsteg,
using a camera at 16 frames per
second, there would be two, not one,
curves. The draw curve would have
slightly higher valves than shown,
and the let-down curve would have
slightly lower values.

Efficiency is what engineers
tend to adulate. A bow's peak
efficiency is equal to 100% less the
hysteresis. Thus, peak efficiencies
for bows vary between about 80% to
95%. The joker, however, is that
the only way for a bow to deliver
peak efficiency is to 1let down
slowly. If bows were used to shoot
crow bars, their peak efficiencies
would tell us what we want to know.
When firing arrows, however, bows'
efficiencies are much Tless than
their peak efficiencies. The reason
for the drop of efficiency from peak
when shooting arrows is that the bow
imparts velocity not only to the
arrow but also to various parts of
the bow. The chapter on '"virtual
mass" goes into this aspect in
depth. The bottom 1ine, however, is
that the virtual mass of the bow
when compared to the arrow it is
shooting, is a much more meaningful
number than is efficiency.

Page 2-1.
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Chapter 3 ... BOW ENERGY LOSSES

Virtual Mass

The efficiency of a bow is the
ratio of energy imparted to the
arrow compared to the amount of
work done drawing the bow. As
already mentioned, hysteresis
accounts for a loss of from 5% to
20%. Actual efficiencies vary 2
great deal, and the same bow will
have efficiencies which vary with
the arrow shot. A "dry-fired" bow,
for instance, has an efficiency of
zero because there is no arrow to
accept any energy. The same bow
when shooting an extremely heavy
arrow, such as a crowbar, will have
an efficiency almost equal to 1N0%
less the hysteresis. Thus the
inherent potential efficiency of a
bow is (100% - 5%) to (100% -20%) =
95% to 80%.

When  shooting an ordinary
arrow, parts of the bow are still
in motion at the moment the arrow
leaves the string. For 1instance,
that part of the string which was
in  contact with the arrow is
traveling at the same speed as the
arrow at the moment of separation.
The T1imbs of the bow are still in
motion at the moment of separation.
Accounting for all the energy
remaining within the bow and it's
components  at the moment of
separation would be quite
complicated if each component were
examined individually,
Fortunately, an easier method was
developed by Paul E. Klopsteg in
about 1940,

The concept of "virtual mass"”
was developed as an easy way to
account for all the eneray
remaining with the bow at the
moment of releasing an arrow, It
makes no attempt to explain exactly
where and how that energy 1is;
rather, it simply computes a
number to describe the energy.
"Virtual mass" is defined as being

that mass which, were it traveling
at the same speed as the arrow,
would account for the lost eneray.

An example: A bow has a 10%
hysteresis 10ssS. It propels an
arrow at such speed as to account
for 60% of the bow's input work.
The remaining 30% is presumed to be
still in the bow at the moment of
release, Since the arrow has 60%
and the bow has 30%, the virtual
mass of the bow is said to be
half of the mass of the arrow.
Thus if the arrow weiahed 500
grains, the bow would be defined to
have a virtual mass of 250 grains.

Oneida Labs publishes a
virtual mass of 176.3 grains for
their Oneida Eagle bow when set for
a peak draw of 60%#, Thus, the
Oneida Eagle bow when shootina an
arrow three times as heavy, 1.e.
176.3 x 3 = 528,9 grains, should
have an efficiency of 3/4ths or
75%, which it does.

The concept of "virtual mass"
would be useless if the bow's
virtual mass computed to be a
different number under different
circumstances. According to
Paul E. Klopsteg's article "Physics
of Bow and Arrows" published in the
Aug. 1943 issue of American Journal
of Physics, the virtual mass of a
bow is 1in fact a constant. He
tested a large number of  bows
shooting vastly different weight
arrows and satisfied himself that
each bow had a constant virtual
mass. In his day, of course, the
adjustable-draw-weight bow had not
yet been introduced. Oneida's
published data on their Eagle bow
shows sliaghtly different virtual
masses for the same bow set at
different weights, Their data is:

Peak draw force 50# 55# 60#
Virtual mass 171 169 176 ar,
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It is not clear from inspection of
these numbers if the differing
virtual masses are real or are
simply a result of measurement
dispersions.

Over-draw Conversion:

The usefulness of the virtual
mass concept can be illustrated by
recounting the author's experience
in converting his bow from standard
to "over-draw". An "over-draw"
conversion 1is the addition of an
arrow rest about three inches back
from the conventional location.
The reason to do this is to be able
to shoot shorter, lighter, and thus
faster, arrows. Shorter arrows
weigh less not only because they
are shorter but also (and meinly)
because they can have thinner
walls. I wanted this conversion
because I was totally convinced of
the usefulness of speed in
offsetting errors in the estimation
of target range. The archery shop
owner assured me that I would aqet
at least a 15% speed increase. I
took his word for it, but he was
wrong. As a mechanical engineer, I
should have known on twoc counts.

First, knowing nothing about
the "virtual mass" concept, I still

should have known that the amount
of enerqgy imparted to the arrow
would be unchanged, at  best.

Knowing that, it would have been
easy to compute the speed change
based simply on the arrow weight
reduction. The original arrows
were 29" 1long, 21/64" diameter,
0.017" thick wall arrows commonly

known as "2117"; and they weighed
545 grains. The over-draw arrows
were 26" long, 21/64" diameter,
0.014" thick wall arrows commonly
known as "2114"; and they weighed
460 grains. The ratio of 545/460
is 1.185, Since energy of an arrow

is proportional to the velocity
squared, the maximum velocity ratio
would be the square root of 1.185,

which is 1.088., Thus I should not
have hoped for more than an 8.8%
speed  increase. The "yirtual
mass" concept, however, would have
predicted a speed increase of only
6.0%. The underlying reason is
that with a faster arrow, the parts
of bow are also moving faster and
thus retaining more energy. The
calculation for my bow, before and
after, is as follows:

Data:

Input energy = 69.2 foot-pounds.

Hysteresis = (about) 8% of input
= 0.08 x 69.2ft-1b = 5,5 ft-1b.

Velocity of standard arrow = 193
feet/second (for 29" 2117 arrow).

Weight of standard arrow = 545
grains (for 29" 2117 arrow).

Weight of overdraw arrow = 460
grains (for 26" 2114 arrow).
Steps in Calculation of bow's
virtual mass:

First: Calculate arrrow's energy.
Arrow's energy = mv2/2q

Arrow's energy = (545qr/7000ar/#) x
(193 ft/sec)? / 2 x 32.2 ft/sec?,

Arrow's energy = 0.0779# x
37,249 ft / 64.4 = 45,0 ft-#.

Second: Calculate missing eneray.

Missing energy = input =~
hysteresis - arrow's = 69,2 - 5.5 =
45,0 = 18.7 ft-#.

(continued next page)
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Third: Calculate virtual mass.

There are several ways to do
this. The easier is to use the
ratio of missing energy to arrow
energy, like so:

Virtual mass . missing energy
Arrow weight arrow energy

- 18.7 ft-#¢ _ 0.416
45.0 ft-#

0.416 x 545 grains
226 grains,

Virtual mass

Calculation of Predicted Velocity:

The output energy and ‘he
bow's virtual mass will remain
unchanged after the ‘"overdraw"

conversion, Thus, new data shall
become:
E,out = 63,7 ft=1bs.

VM, bow 226 grains.

W,arrow = 460 grains.

E,out = (W,arrow + VM,bow) x V2/2g

v = E,out x 2q/(W,arrow + VM,bow)

V2 _ 63.7ft # x 2 x 32.2 ft/sec?
(460 + 226)gr/7000 gr/?

= 41,860 ftz/sec2

Vv = 205 ft/sec. = predicted
velocity for lighter arrow.

Notice that the velocity predicted
using the virtual mass concept is
6.0% faster (205fps/193fps = 1.06).
The velocity predicted using the
constant energy (to the arrow)
concept was 8.8%., As best [ was
able to determine, the actual
velocity increase was a little less
than 6%.

"Dry-fire Velocity:

A bow's efficiency is zero
when fired with no arrow. The
virtual mass concept can Tlet you
predict the highest speed
achievable with an arrow weighing
nothing at all. For my own bow,
using the data above:

vZ x (VM,bow)/2g = E,out
v2 = 2g x E,out/VM,bow

_ 2 x 32.2ft/sec’ x 63.7ft-#
(226 qr/ 7000 qr/#)

= 127,062 ft2/sec?

V, max = 356 fps.

Crowbar Velocity:

Visualize shooting an ultra-
heavy arrow in the form of a 50#
crowbar mounted on roller skates.,
The weight of the crowbar would be
so great when compared to the
virtual mass of the bow that
virtually all of the bow's output
energy would go to the crowbar,
This is another way of saying that
the launch velocity would be so
slow that the kinetic energy
remaining in the bow parts would be
negligible. Using the author's bow
as an example:

v2 x (W,crowbar)/2q = E,out

v2 = 2g x E,out/W,crowbar

= 2 x 32.2 ft/sec? x 63.7ft-#/504
v2 = 82 ft?/sec?

V,crowbar = 9,1 fps = 6.2 mph.
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Interre1étion5hips between Arrow Weight, Virtual Mass & Efficiency:

A bow's "virtual mass" is a
much more meaningful number than is

"virtual mass" can be used directly
to ascertain the fraction of energy

it's efficiency. Efficiency varies which will be 1imparted to the
with the weight of the arrow. All arrow. The following table assumes
bows have zero efficiency when a bow has a virtual mass of 200
shooting zero-weight arrows. All grains, and shows the ratios of
bows are as efficient as Timited by engﬁiy imparted to arrows of
their hysteresis when shooting d ere:\"- werjhwls.
ultra-heavy arrows. A bow's

Virtual Arrow Total Arrow's Arrow's

mass weight Ener Speed

(qr) (gr) (gr) iii

200 0 200 0% 200% = Dry fire.

200 200 400 50% 141%

200 400 600 67% 115% = Light weight arrow.

200 500 700 71% 107% = 2016 x 30" broadhead.

200 600 800 75% 100% = 2219 x 30" broadhead.

200 800 1,000 80% 89%

200 1,800 2,000 90% 63%

200 6,750 6,950 97% 34% = Steel 3/8" x 30" rod.

200 22,310 22,510 99% 19% = Steel 11/16" x 30" rod.

Table 3-1 ... Energy Absorbed & Speed Achieved versus Arrow Weight

Table 3-1 was calculated as reference) to 200 grains for the
follows: dry fired bow. The ratio is 8/2 =

First, a "reference" situation
of a 600 grain arrow matched with a
bow having a virtual mass of 200
grains was taken as a starting
point having, by definition, 100%
of reference speed.

Second, the arrow's energy 1is
computed as equal to the weight of
the arrow divided by the sum of the
weight of the arrow plus the weight
of the bow's virtual mass. For
instance, for the reference point,
arrow energy is 600gr/800gr = 75%.

Third, the arrow's speed was
computed by looking at the
comparison of total weights and
taking the square root thereof.
For example, in the "dry fire"
situation the vratio of total
weights 1is 800 grains (for the

p

4, The square root of 4 is 2,

which is 200%.

Variation of Virtual Mass

Back in 1940 or so when Paul
E. Klopsteq came up with _ the
"virtual mass" concept, he said
that a bow's virtual mass is a
constant. I think that most
engineer/archers had to know that
there was no physical explanation

why such should be exactly true.
None-the-less, since it was
obviously an excellent mathematical
tool closely approximating actual

field measurements, there was no
reason to reject the concept. In
1987, Norbert F, Mullaney, P.E.,

sent me a copy of his "white paper"

on the topic of wvirtual mass
wherein he explained that a bow's



virtual mass 1is not in fact
constant. Reviewing his data, I
formulated the following phrase to
describe his findings:

"A bow's virtual mass is a
constant plus a small percentage
of the arrow's weight."

The small percentages were shown in
Norb's formulas to be:

Jennings Split T .......... 6.9%
Bear Custom Kodiak T/D .... 13.2%
Stewart 62" Recurve ........ 0.1%
Browning Fire-Drake Recurve  10.5%
(unidentified bow) .......... 5.9%

In the Auguest 1990 issue of
Bowhunting World (published in May
1990), Norb Mullaney, P.E., came
up with new information on the
variation of virtual mass. Buried
in his special longbow report, "A
Longbow Called Grande" he showed
how the virtual mass of different
type bows vary with changes of
arrow weight.

Translating his data into the same
format as above, the percentages
of arrows' weight by which virtual
masses changed were:

Recurved 1limb compound .... +9.9%
Straight 1imb compound .... +2.6%
02" FEeCUPYR iicevian snivinns +0.6%
68" Grande longbow ........ -6.8%

Conclusion

Bows are fairly efficient
machines. They are impractical
when used at the upper or at the
lower limits of efficiencies. Thus
the trade-offs faced by bowmakers
and by bow users will always Tleave
a lot of room for differences of
opinion.

%k ke END * kK
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Chapter 4 ...

BOW ENERGY OUTPUT: ARROW'S ENERGY

The conversion of work stored
within the bow to kinetic energy of
an arrow is quite efficient. Order-
of-magnitude numbers accounting for
the eneray which the archer bputs
into the bow upon drawing are:

Arrow propulsion: 69%
Bow's "virtual mass": 23%
Bow's hysteresis: 8%.

Brrow's vibration & rotations:
Negligitle

See Chapter 1 for a discussion of
the work the archer does upon
drawing. See  Chapter 3 for a
discussion of "virtual mass", which
1s a concept devised to put a number
on the amount of kinetic energy left
behind in the bow at the moment the
arrow leaves, See Chapter 2 for 2
discussion of the bow's hysteresis,
which 1is the energy lost due to
internal friction within the bow.

The enerqy imparted to an arrow
in the form of forward kinetic
energy dwarfs other forms of energy
imparted to the same arrow, such as
rotational and vibrational eneragy.

Velocity energy (or propulsion eneray)

¢ - S46ar (180 ft/gec)?
2 x 32.2ft/sec’ x 7000qr/?

F = 39,2 foot-pounds.
The opposite calculation can be
made, Given the energy expected to
be imparted to the arrow, how fast
will it qo? Answer:

E=Wx Vi/2q.
Solving for ve yields:

= 2g x E/W

Example:

Arrow weighs 546 grains. 45
foot=pounds are predicted as arrow
propulsion energy. What will arrow

speed be?

v2 = 2q x E/W

2 = 2.x 32.2ft/sec? x 45 ft-#
546 qr / 7000 aqr/#

v2 = 37,154 ft2/sec?
v = 193 ft/sec.

Elevation Eneray

of an arrow is its mass multiplied
by the square of its velocity:

E =W x VZ/2c where

W = weight of arrow
V = velocity
g = gravity = 32.2 ft/sec2

Example:

An arrow weighing 546 grains is
shot at 180 ft/sec., What is it's
energy? Answer:

There 1is a conversion between
speed and altitude gqiven by the
formula:

A = V2/2q.

This will be discussed 1in more
detail in the chapter on
trajectories, When huntina, it is
important to realize that when
shooting uphill the arrow will
arrive traveling slower and will
thus have reduced penetration power.
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Enerqy of Rotation & of Vibration:

Vibration, rotation, fish=
tailing and porpoising are forms of
kinetic energy. Their magnitudes
are calculated in the following
paragraphs and are shown to be
insignificant when compared to the
arrow's total energy. The
calculations do not shed any 1light
upon how important such energy
forms are to accuracy.

Rotational energy is zero while the
arrow 1is being launched, because
the nock prevents the arrow from
rotating. As soon as the arrow
clears the string, it is free to
rotate as dictated by the
fletching's spiral. 1 measured the
rotation of my 5" plastic 3-fletch
factory arrows and found that they
made one revolution while advancing
5.1 feet. I did this by taking the
arrows under water with me in the
swimming pool and counting the
revolutions made while they floated
from the bottom to the surface.
Knowing the arrow's forward speed
makes it possible to compute the
revolutions per second.

Example:

Arrow's forward speed = 180fps.

Rotation = 1.0 revolution per 5.1
feet advance.

Calculate revolutions per second.

RPS
RPS

180 ft/sec x 1 rev/5,1ft
35.3 rev/sec

nn

The rotational energy is similar to
the forward energy. It is mass x
velocity squared, but in this case
the velocity is circular. For the
analysis of an arrow, it is
easiest to ignore the fact that the
tip and fletching have different
distances from the arrow's center
than do the walls of the arrow. To
figure out the velocity of the
arrow's walls, use their average
radius.

Example:

Arrow is "2117", having

outside diameter = 21/64".

Arrow's wall thickness =
17/1000ths.

Average radius

1/2 x (21/64"- 0,017")

0.1556"

Velocity

pi X 2 X radius x rps

3.1415 x 2 x 0.1556" x 35rps

34,5"/sec/12"/ft = 2.85 fps

n n n

_ 546 gr (2.85ft/sec)?
Energy = 2 A et

68.9 ft-grains /7000 gr/#
0.10 ft-pounds.

non

Note that this amounts to less
than one tenth of one percent of
the energy of forward motion.

Conclusion: Rotational energy is
negligible. Note that this
conclusion 1is different than for
bullets. Bullets, however, depend
upon the gyroscopic feature of high
rotational speed to avoid tumbling.
Arrows rely upon their fletching.
The reason for an arrow to be
rotated at all is to average out
the up=down and left-right
aerodynamic profile presented by
the fletching and by the broadhead.

Fish=tailing &/or Porpoising Energy:

The "fish-tailing" and/or
"porpoising" of an arrow
represents rotational energy, with
rotation being about a vertical
axis. A badly fish-tailing arrow
looks to
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the eye as though it would (were it
not for fletching) complete one
revolution during a 40-yard shot.
The amount of energy this represents
is:

E = weight x pi x 2 x (avg.
radius) x rotational speed squared /
? xq

Example:

Assume arrow 1is 546 arains,
2117, 28" 1long, with weight (on
zverage) located 10" out from fore-
and-aft center of arrow, fired at
180 ft/sec.

Rotational speed is one
revolution in (40 x 3 feet)/(180
ft/sec) = 1.5 rev/sec. Rotational
velocity is 1.5 rev/sec x 10/12 ft x
3.1416 x 2 = 7.85 ft/sec.

. _ 546 qr (7.85 fr/sec)?
- 2 x 32.2ft/sect x 7000qr/#

E 0.07 foot-pounds.

Note that this is insignificant
compared to forward speed's energy.

Vibrational Energy

A pole-vaulter uses the energy
stored within his (bent) pole to
hoist him up and over. An arrow is
similarly bent while being
accelerated. Just how that energy
is accounted for and what influence
it has on performance is unknown to
this author. It may very well be
quite significant, and it may well
be inter-related with consideration
¢f arrow spine, On one hand, the
vibrations may cause the arrow's
tail to wag, resulting in a
parachute type slowing of the arrow.
On the other hand, it may somehow
propel the arrow in a manner similar
to a Chinese boatman sculling. The
amplitude of this vibrational energy
must be negligible compared to that
of forward velocity because the

hysteresis and virtual mass concepts
of energy accounting work well while
ignoring vibration, The author
mentions these considerations
without shedding any 1ight simply in
the interest of attemptinag to give a
complete accounting of the various
forms of eneray.

Heat Eneray

Eventually, all of an arrow's
enerqgy ends up in the form of heat.
The arrow heats the air though which
it passes just a little bit. When
it hits the target, both the target
and the arrow are heated by the
resulting friction. Just as a
matter of passina interest, the
amount by which an arrow will be
warmed is calculated. For
simplicity, it will be assumed that
the arrow arrives with 100% of the
enerqy it had at launch, Further,
it will be assumed that all of this
energy ends up heating the arrow,
not the target. A final simplifying
assumption is that the arrow is 100%
aluminum,

Data for author's AS9# compound with
overdraw conversion:

Energy = 63.7 foot-pounds,
Weiaht = 460 agrains .
Specific heat of aluminum =
0.22 Btu/pound®F.
One pound = 7,000 grains
One BTU = 778 ft-1bs.

Temp rise = ENergy -
enp weight x specific heat
Temp rise = 83.7 ft-2

460 ar x 0.22 Btu/#F°

#$C .x -
Temp rise = 0‘633{1 BTY 7”&

778 *+-#/8TY
= 5.7 f°,
—_——

Next time you withdraw your arrow,
see if you cannot notice it's

warmth!
*kk END % ¥ x
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FIRING KINETICS

The mathematical description of
an arrow's acceleration, velocity
and location at each moment between
the time the string is released and
the time the arrow leaves the string
will be computed. A compound bow's
non-linear force-draw curve makes it
difficult to handle mathematically.
The recurve &/or Tlongbow, however,
have a nearly linear force=-draw
curve. Thus the recurve &/or
longbow can more easily be
mathematically analyzed.

The force=draw curve for a 324
fiber-backed lemonwood puliing O# @
5" and 32# at 26" looks as follows:

32#

>
- - - - x

>
.

X Energy .
x -

X .
0#

T ¥
UII 5|l 26“

The area under the curve represents
stored energy.

Acceleration

The forces delivered to the
arrow (and to those parts of the bow
which are also accelerated) are the
reverse of the force of drawing the
bow. Re-drawing the bow's force-
draw curve, but re-orienting it to
visualize the arrow being shot from
left to right yields:

32+#
1+ X
; X
X
- X
- X
X
. Energy X
- X
- X
0# -
Oll 21"
Travel

Acceleration equals force divided by
mass, i.e.: a = F/m, Since force,
as shown above, is a lineal function
of distance, so too is acceleration,
Thus acceleration versus travel from
point string leaves the archer's
fingers to the point where arrow and
string part company is as shown in
the following diagram.

A i
c -
¢ b X
e X
1 - X
e X
r 1 X
a « X
t X
i X
0 - X
n - X
0# -
(e} 21"
Travel

Peak acceleration 1is the initial
acceleration, The mass to be
accelerated includes the arrow plus
those parts of the bow which are its
"virtual mass".
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Virtual mass computed:

Virtual mass is that mass a,max = F/(W,arrow + V.M,)
which, were it going at the same
velocity as the arrow, would account 32#/(545 + 426,.3)grains

for all the energy for which the r _ft
arrow does not account. In our _32#"7000%“32'2520."

example, ignoring the 3% to 8% - Q7.3 qr

hysteresis loss, the area under the 3

force-draw curve is: = 7,426 ft/secz.

L ox 32# x 21" / 12"/# = 28.0 ft-1b. Dividing by 32.2 ft/sece yields the
"g"-force, which 1is a tremendous

This bow imparts a velocity of 114 231-q's!

ft/sect to an arrow weighing 545

grains. The kinetic energy in the Velocity

arrow at the moment of launch is:
The variation of velocity with

Evgppgy = /2 m v2 travel can most easily be found by
\ 2 noting that we know how much eneray

545‘4,(ll'1‘ 59(__/’ remains under the force-draw curve

Esarrow - = — for any given point., Thus we can
A= 7000 t“‘ 32.2 Sec & compute how much energy has been

delivered to the arrow and virtual
mass for any given point. Knowing
the arrow's energy, it is an easy

= 15,71 ft-1bs. task to compute it's speed using the
formula:

E ‘arrow

The missing energy is considered to
be in the bow's "virtual mass"., The E
missing enerqy is:

1/2 x m x V2

(W,arrow + V.M.) x v2/2q.

E,bow = E,input - E,arrow
To derive a formula for energy at

= 28.00 - 15,71 = 12.29 ft-1bs. any point, the force-draw curve is
re-drawn showina an arbitrary length
The virtual mass needed to account of travel, "L":

for the missing energy is:

VM = W,arrow x E,bow/E,arrow F = 32¢# x (1-L/21")

F
= 545 grains x 12.29/15.71 0
r
VM = 426.3 grains. ¢ Energy
e imparted : Energy
The total mass to be accelerated is : yet to be
that of the arrow (545 grains) plus : imparted
the bow's virtual mass (426.3 0# 4ecmceccccccc e ———me—————
grains), or 971 grains total. o" L 21"
Travel

Peak Acceleration:

The force at point "L" is:
Now that the total mass has
been computed, the opeak (&/or

F = 32# x (1 -L/21")
initial) acceleration can be F

F,max(1 = L/L,max).
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The average force between starting
point and point "L" is:

F, avg = 1/2 x (F,max + F,L)

= "j,(ﬁomu f(;‘;,u l"-- ))

F x (2 = L/L

*max ’max)'

The energy 1ﬁharted is the average
force multiplied by the travel:

E,imparted = F,avg x L
L
E,imparted = _6_%‘_‘:_ (2 N j_,ﬂ“> L

Conversion of energy using

mV%/ ‘eﬁJsl
5; 29 Yl

29 x E/(W,arrow + VM )
i2

 E

"

(w+VH
Ly By b))
V 'w'rVﬂ)‘ Lm&t
9 x qun(;z L/.{mat)"l-
Example: WtV M
For our sample bow:

s45qrt 42033 ) 2q

W+ VM = Ty
Le max = 21"/12"/Fft = 1.75 ft
F,max = 324,
&, c32m (g - E) et
V2 3225 T ’S‘ﬁ'
0. 139%

L
- 7«{26“0‘75“‘(2'7.7970

A resulting table of values is:

Travel Velocity
(inches) (ft/sec)

.0 .0
5 24,7
1.0 34.8
2.0 48.6
4.0 66.9
6.0 79.8
8.0 89.5
10.0 97.1
12.0 103.0
14,0 107.5
16.0 110.7
18.0 112.8
20.0 113.9
21.0 114,0

Time versus Speed &/or Acceleration:

The preceeding analysis
described accelerations and
velocities of the arrow versus
positions of the arrow as it
traveled from the finger release
point to to the point of separation
of string and arrow. The analysis
was totally mute on when these
events would take place. Now we
will work up the formulas needed to
describe acceleration, velocity and
position for any given moment
following release of the arrow up to
the moment when the arrow separates
from the string.

Referring back to my
undergraduate text book on dynamics
("Mechanics, Part II: Dynamics" by
J. L. Meriam of the University of
California, Berkeley) the math which
applies is that which describes a
slider block attached to a spring.
On Pages 22, 23 & 24, Professor
Meriam works up the following
formulas:

a -kzs where a = acceleration

k

n

a constant

s = displacement

Page 5-3.



v = VO cos kt v = velocity
Vg™ velocity, original
t = time
s = (vo/k)sin kt
T =2 pi/k T = period of cycle

S A sin kt + B cos kt

v = Ak cos kt - Bk sin kt
Translating all the above to what
described an arrow launch from a
recurve bow was a bit challenging,
but I finally worked up the
following:

-k = bow's spring constant

divided by mass of arrow and bow's
virtual mass.

2 = ]
-k = Cg/(Wagprow * Wabow)-

C = peak draw weight divided by
draw length,

C = Fipax/Lomaxe

a ==kV,pay sin kt.

v = Vipax €o0s kt.

L = {¥icaa k) sin kit

The trick to using the above
formulas is to realize that "kt" is
in radians. For most calculators,
it is necessary to convert radians
into degrees. Further, the only
applicable values of "kt" are those
between 0° and 90°.
thing about launch time to be
calculated is the total duration of
the launch, which occurs when "kt"
equals 90°, Ninety degrees equals
90 x pi/180 = 1.571 radians. Thus
the duration of a launch is:

kt = 1,571

*max

t = 1.571/k

‘max

Thus the first

The next items to get straight when
using the above formulas is whether
t = 0 at the moment of string
release or at the moment of arrow
separation, rinallys 9t ds
necessary to keep straight if L =0
at the moment of string release or
at the moment of arrow separation.
! suggest not worrying about which
is which, but if the answer comes
out backwards, simply reverse it,

Example:
Using the sample bow which

developes 32# pull at 21" of draw
and which fires a 545 grain arrow at

114 ft/sec and which has a virtual

mass of 426,3 grains:
= 3I2g/21Y = 324 x Y2V/TE 1 21"
= 18,286#/ft

+ W

N’arrow *how

= (545+426.3)grains/7000qr/#

W = 0.13884%,

*arrow + ”’bow

k = =(Ca/(Magppow * Wobow))?

**
o - = [ RaseTy x32255,
0. 1388 #

k = -(4,243/sec?)%

k = =65,14/sec

tomax = 1:871/k = 1.571/(=65.14/sec)
t = =0.0241 seconds =

’ total
periodmg¥ launch.

Repeating the formulas for each of
the parameters:

a = 'kv'max sin kt
e ot [sHt
a ?fig“"""tc ain (' o '>
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¢5.4E
d 7 4265‘3c ( «5¢c.
Vv = V’max cos kt
V =114 ft/sec cos (-65.14/sec x t
L = (V ’max/k sin kt
L bt o 65N E t)

—ChIq 5ec

L = 1,75 ft sin (-65.14/sec x t).

Solving and putting in table form
yields the following:

the arrow hardly moves at all during
the first 25% of the launch period.

Travel versus time shows that
half of the arrow's movement occurs
during the last 15% of the launch
period.

Acceleration versus time shows
that peak acceleration prevails for
2 relatively long time.

The time graph shows that
during the first half of the Taunch

period, the arrow accelerates at a

tremendous rate but does not go very
far. Durina the second half,
acceleration drops to nothing but
the arrow moves & great deal.

Table of acceleration, velocity & travel versus time

i kt Kt sin kt a cos kt

(sec) (rad) (deg) (fps2)
-.0241 -1,571 -20.0 -1.000 -7,426 .000
-.0214 -1,396 -80.0 =-.985 -7,313 .174
-.0187 -1,222 -70.0 -.940 -6,978 .342
-.0161 -1.047 -60.0 -.866 -6,431 .500
-.0134 -.873 -50.0 -.766 -5,689 .643
-.0107 -.698 -40.0 -.643 -4,773 .766
-.0080 =-.524 -30.0 =-.500 -3,713 .866
-.0054 -,349 -20.0 -.342 -2,540 .940
-.0027 -.175 -10.0 =-.174 -1,290 .985
0 .000 .0 .000 0 1.000

CHART ANALYSIS:

The above data is plotted on
Figure 5-1 Acceleration and
velocity are also plotted versus
travel in the same figure. A study
of those graphs leads me to the
following conclusions:

Velocity versus travel shows
that half of peak velocity is
achieved in the first 3" of travel.

Velocity versus time shows that
velocity increases almost uniformly
with time for about the first 2/3rds
of the launch period.

Travel versus time shows that

LoL ot
(ft) Tin) (sec)
Rearranged

.0 .0000
-1.72 .3 .0027
-1.64 1.3 .0054
-1.52 2.8 .0080
73.3 =-1.34 4.9 .0107
87.3 -1.12 7.5 .0134
98.7 -.875 10.5 .0161
107.1 -.599 13.8 .0187
112,3 -,304 17.4 .0214
114.0 0 21.0 .0241

X
(fps)

+0
19.8
39.0
57.0

-1.75
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NORBERT F. MULLANEY
PROFESSIONAL ENGINEER
WISCONSIN REG. E04042

8423 N. GREENVALE RD. 414.332.6126 (HOM:
MILWAUKEE, WISCONSIN 53217 414-447-4042 (OFFIC

June 30, 1986

Mr. Thomas L. Liston P.E.
Liston and Associates, Inc.
890 Saratoga Avenue

San Jose, CA 95129

Dear Thomas:

In reviewing your paper "Firing Kinetics", I feel that your mathematical

approach may well be a valid statement for perfect conditions of release and
initial launch of an arrow, but it fails to consider conditions that exist in the
"real Tife" event.

- In the first place, at the instant of release, the bow string does not

immediately apply the holding force to the arrow. The bow string, whether it
is held by the bowman's fingers or with the use of a release aid, has a
discontinuity in the area of the nocking point. When the string is released
and the limbs start their return to brace height position, this discontinuity
must be eliminated before the force of the string can be fully applied to the
arrow. This action causes a delay in the application of the full string force
and hence the instantaneous acceleration of the arrow.

Over and above this string discontinuity, we also have a buckling action of

the arrow shaft. This buckling action is maanified with the finger release

but it is present to some degree even with the use of sophisticated release

aids. I believe that study would show that the bow string itself, under the
influence of discontinuity elimination and the forces of acceleration, acts

somewhat elastically further softening the initial application of the string
force on the arrow.

Dr. Dallas Smith of Tennessee Technological University studied arrow launch
with strobe photography. He used a compound bow for part of the study and
a recurved bow for the remainder. Smith was able to measure displacement
at an initial time lapse of just over 5 milliseconds and thereafter at

increments of about 2.5 milliseconds. RECEIVED

Liston & Associates, Inc.
Mechanical Engineers

JUL 7 1986

(age g%



.

His plots of propulsion force (string force) applied to the arrow reflect
the difference that exists between the draw force characteristics of the
recurve and the compound. He extrapolates the acceleration curve of the
compound to a zero intercept of about 3350 feet per second/second but the
extrapolation covers about 8 milliseconds after release.

He did not present similar data for the recurved bow he tested but it is
logical to assume that he would have projected a greater zero intercept.

It is my personal opinion that the initial acceleration is not zero but
has some finite value that is substantially lower than pure theory would
envision. I believe that you are correct in assuming that Hickman erred
in the shape of his acceleration curve, but Smith writes of having used
the laws of impulse-momentum and work-kinetic energy to aid in the extra-
polation. He makes no mention of the initial softening of the applied
propulsion force for the reasons I cited.

I have not personally conducted any experimental analysis of the intemal
ballistics of the bow and arrow combination. My observations and analysis
are based on the work of others, but I cannot rationalize instantaneous
high Tevel acceleration considering the events that I know to occur.

Sincerely,

Norb Mullaney
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Chapter 6 ... TRAJECTORIES, FRICTIONLESS

Frictionless Flight

Arrows flying short distances
(less than 100 yards) with
streamlined fletching (as opposed
to "flu-flu" fletching) behav=

semewhat as thouah there were nc
significant friction, See  the
chapter, "Trajectories vwith
Friction." In this chapter, only

frictionless flight is considered.
The trajectory of an arrow in
flight is much the same as that of
any other projectile, such as an
artillery shell, a thrown rock or
the streem of water from a gardern
hose. The two beginning formulas
from which all others are derived
are:

Equation #6-3 ...

y = x tan A - qx2/f2V2cos2A]

Each of the preceding three
formulas are valid for arrows shot
in any direction, includina down,

Limit of all possible trajectories:

X tV cos A Equation #6-1

tV sin A - gqu Eqn #6-2

¥

where:

= time elapsed since launch,
horizontal distance.
elevation compared to launch.
angle of launch.

velocity at moment of_launch.

gravity = 32.2 Ft/secz.

0 = D X ct
[ 1A | A |

Equation #6-1 says that the
horizontal component of velocity is
constant throughout the arrow's
flight., Consequently, the distance
traveled in the horizontal
direction is a direct function of
elapsed time.

Fquation #6=2 utilizes the

idea that the arrow's height
depends upon it's initial upward
component of velocity, which is

continuously changed by aravity.
The formula holds for negative
values of height, such as when
firing an arrow off a cliff into &
valley,

Elimination of time between

Equations #6-1 & #6-2 yields an
equation for the trajectory:
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An equation to calculate the
envelope of all possible
trajectories of projectiles fired
at the same velocity is:

Equation #6=7 ...

y = (V2/2q) - (gx2)/(2v2)

Figure 6-1 shows two typical
trajectories plus an envelope of
all possible trajectories, and Fig.
h=2 1is the same excent it is to-
scale for a launch velocity of
200 ft per second.

—ENVELOPE OF ALL

________ ¥~ POSSIBLE TRAVETORIES

N~ TYPICAL
A TRAJECTORIES

Fig. -] « TRAJECTORIES

Maximum horizontal range:

Maximum horizontal range of
projectile fired at 45° above
horizontal is:
Equation #6-4
= y?
Rmax = V°/9
where Rmax = maximum range,
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Time of flight:

The time of flight of a
projectile fired at a target having

the same elevation as the launch
point:
Equation #6=5
t = (2V sine A)/qg
Arrow's speed:
By shooting an arrow straight

up 1in a frictionless environment
(such as on the moon) and noting the

Change of range versus change in
elevation:

Change of range versus change
in arrow elevation for a horizontal

shot is given by:

Eqn.#6-12 dR/dA = (-2V2/q) cos (2A)

time from launch to return, firing
velocity can be computed as:
Equation #6-6 V = tq/2
Apogee:

The zenith altitude, h, is:

Equation #6-8 h = v2sinA/(2q)

Maximum altitude:

The maximum altitude possible
when shooting straight up is:

: = e
Equation #6-9 h'max = V& /2q

Range:

The horizontal distance an
arrow will travel when fired at an
angle A above the horizontal with an
initial wvelocity V at a target
having the same elevation as the
launch elevation is:

Equation #6-10 R = (V%/q) sin(2A)

Elevation angle:

The elevation angle needed 1in
order to fire an arrow at a
horizontal range R is:

Eqn. #6-11 A =% arcsin (Rg/V?)

where "arcsin' means 'angle whose

sine is",
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£11 ordinary archery shots use
elevations of 0 to 8°. At higher

angles, the target is obscured by
the arrow. Therefore,
cos (2A) = cos (0° to 2 x 8°)

cos (0° to 16°)
1.000 to 0.961.

W onon

The change of range for &
change of elevation is almost
perfectly linear, since cosine 2A is
almost 1.00 at all elevations wused,
Thus, beyond 30 yards, "“gapping"
between sighting pins is linear. In
other words, if pins are set at 30,
€0 & 70 vards, half way between
would be 40 and 60 yards. At 1less
than 30 yards, parallax caused by
eye=above-arrow causes errors.

When shooting for extreme

range, the elevation angle is 45°,
Plugaing that into Equation #6-12
yields:

cos 28 = cos 2x45° = cos 90° = 0,

Which is to say that dR/dA = 0 when
clout shooting. The fact that the
range achieved varies almost not at
all for small changes from 45° is
well documented. Paul E. Klopsteg
made this same observation in 1932
when he said, "Note that 40° qives
slightly greater range than 44°, but
neither quite reaches the range at
42°," "Since the differences are a
matter of only a yard or two, we may
say that in this case any elevation
between 39° and 44° would give close
to maximum range." "This may
explain the uncanny accuracy
possible in clout shooting."”




My own computer run-outs agree
generally, but  show slightly
different observations depending
upon the drag/weight ratio of the
arrow beinag shot.

Summar

Although frictionless flight is
not what arrows actually experience,
it is very useful to compute what a
friction-free arrow could do. No
real arrow can do better. In many
circumstances, the difference
between frictionless and actual
flight is small enough to be
ignored.

A few thumbrules can be stated,
a2s follows:

"An arrow can be shot twice as far
horizontally as it can be shot
vertically."

"Maximum range is proportional to
the square of launch velocity."

"Maximum altitude is proportional to
the square of launch velocity."

"The time aloft is directly
proportional tc launch velocity."”

"For small angles, range is (almost)

directly proportional to launch
angle."
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Chapter 7

. AIR FRICTION.

Drag Formula:

The amount of drag on an arrow
caused by air friction depends
upon:

1) The velocity raised to the
1.85th power (approximately).

2) The air density.

3) The areas of the various
components of the arrow,
specifically:

a) Cross-sectional area.
b) Shaft wall area.
c¢) Fletching surface area.

In each case, the generic formula
is the same, namely,

Drag = coefficient x area X
"velocity pressure".

D=2CxAx (VP)

Equation 7-1

Velocity Pressure

In every case, the ‘"velocity
pressure" is the same, namely:

Velocity pressure equals density
times velocity squared divided by 2
times gravity, i.e.:

VP = dv2/2g

Equation 7-2

Velocity Pressure Sample
Calculation: For an arrow fired at
sea level at 209 fps where density
is 0.076#/ft°, the velocity
pressure is:

_ 0.075#/ft3 (200ft/sec)?
e 7% 3.7 ft/sect

46.6#/Ft2.

VP
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Areas:

The areas to use in Equation 7-1
are, more or less, the surface area
of each component; but there are a
few minor modifications, as
follows:

Tip and nock "areas" are equal to
the cross sectional area of the
arrow. In the case of a blunt tip,
the surface area and the cross
sectional area are identical. In
the case of a bullet tip, the
surface area of the tip is greater
than the cross sectional area; yet
the cross sectional area is used.

Agjp = P1 x DZ/4 8/or

A = pi x DZ/4

nock
Equation #7-3

where: pi = 3.1416
& D = shaft diameter.

The shaft wall area includes the
walls of the tip and of the nock.

Awa]l =pi x D x L Equation #7-4

where pi = 3.1416
D = shaft diameter, &
L = length of arrow overall,

The fletching areas include both
sides of each fletch.

Aertch = LhN Equation #7=5

where L = length of fletch
h = avg. height of fletch
N = number of sides

Note: N = 6 for a 3-fletch,



Coefficients:

Curiously, the coefficient of
friction attributed to each
component (tip, shaft, fletching &
nock) s calculated in a totally
different manner! Postponing the
details as to why, allow me to
simply state my conclusions as to
which formulas apply to each area.

Tip Coefficient

The actual coefficients could
reasonably vary between 0.0 and
0.5. My recommendations are as
follows:

Field tip «... C’tip 0.15.
Bullet tip ... C’tip 0.05.
Broadheads ... c'tip = 0,05%,

* Broadheads are a special case;
see discussion later in this
chapter.

See Figure 7-2 for the drag of tips

at 200 fps for various diameters
and various tip coefficients.

Shaft Wall Coefficient:

The correct wall coefficient
to use is subject to much argument.
I've concluded that the following
formula, which I found in Hoerner's
book on Pages 2-7 & 2-8, are best.
It assumes fully turbulent flow:

C _ 0.074 0.0016L/D
wall = +
Re0'2 Re0'4

Equation #7=5

where
L = length of arrow
D = diameter of arrow
Re = Reynold's number

Reynold's Number

The "Reynold's number" is a
dimensionless ratio long familiar
to mechanical engineers. It is
equal to density x velocity x
length /viscosity.

Re = dVL/ug Equation #7-6a
where:

Re = Reynold's number

d = density of air

g = gravity

L = length of arrow

V = velocity of air

u = viscosity of air

When standard conditions for air at
sea level are used and when
velocity is in ft/sec and length is
expressed 1in inches, the formula
for Reynold's number becomes:

Re = 515 V L Equation #7-6b

Reynold's numbers are used to
predict when flow will be
turbulent, when it will be Tlamina¥;
or whan it might be either. For
flat plates, flow at Reynold's

numbers below 100,000 can be
expected to be fully Tlaminar
regardless of conditions. Between

100,000 and 500,000 flow will be
turbulent if triggered; otherwise
it will be laminar. Above 500,000
flow will be a mixture of Tlaminar
and turbulent unless turbulence has
been triggered, in which case flow
fi11 be fully turbulent. See
Figure 7-1. Archery fletching
Reynold's numbers go from 60,000 to
{,000,000 which means that flow will
vary from fully laminar to
definitely turbulent. Archery
arrow walls' numbers go from
1,400,000 to 8,000,000 which means
that flow 1is always turbulent,
either fully or mostly. However,
Admi ral Moffett's wind tunnel data
would indicate fully laminar flow.
I advocate assuming shaft
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walls to be fully turbulent and
fletching to be Tlaminar and/or
(above Re = 500,000) to be at
minimum turbulence. But my
confidence level is only moderate.
I can get good agreement with
calibrated flight shots using these
assumptions. Yet, Admiral
Moffett's wind tunnel tests seem to
indicate the very opposite:
minimum wall  turbulence plus
maximum fletching turbulence.

Sample calculation of wall
coefficient:
Assume:

Sea level, where

air density is 0. 0?;#/ft3 and
viscosity is 3.77 x 107 #;ec/ft
Velocity is 200 ft/sec.

Length is 30" overall.

Using Equation #7-6b:
= 515 x 200 fps x 30"
Re = 3,090,000

Using Equation #7-5:

C _ 0.074 . 0.0016L/D
wall = -

0.2
Cwa1] - 0.074/3,090,000 +

0.0016(30/(21/64))/3,090,0000+4

c = 0.074/19.9 +

wall = 0.0016 x 91.4)/394
Coa1] = 0-003718 + 0.000371
Cua1q = 0-004089

Although this seems like a small
number, it applies to the largest
area of an arrow, namely it's shaft
walls. Wall drag is greater than
all others except when flu=flu
fletching is used.

See Table 7-1 for wall drag
(in grains) at 200 fps at sea level
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for any diameter and any length,
assuming full turbulence. A
maximum deduct is shown if it is
felt that flow is not fully
turbulent.

Fletching Coefficient

The coefficient for fletching
assumes laminar flow. This
assumption is wrong for flu-flu
fletching but probably correct for
all regular fletching:

_ 0.5
chetch = 1.328/Re

Equation #7-7

where: Re = Reynold's number.
Note: Although the formula for
Reynold's number is the same as
given in Equation #7-6, the Tlength
to use for "L" is the length of the
fletching, not the length of the
arrow. In fact, the length to use
is the average length of the fletch
which, for a nominal 5" arrow, is
probably about 4.5".

See Figure 7-1 for fletching
coefficients at other Reynold's

numbers. The lower left line shows
fully laminar fletching
coefficients. The upper left line

show coefficients for fully
turbulent flow. Actual flow could
be anywhere on or between the two
lines. I believe laminar applies.

Sample calculation of fletching
coefficient:

Assume:

Sea level, with

Velocity = 200 ft/sec.

Length = 4,5" average.
Using Equation #7-6b:

Re = 515 x 200 fps x 4,5"
Re = 463,500



Using Equation #7-7:

g = 1.328/Re0-5

Fleteh - 1. 328/(463,500)°"°
= 1.328/681

Cf]etch = 0-00195

Nock Coefficient

The actual nock coefficients could
reasonably vary between 0.1 and
1.0. As an educated guess for
plastic nocks as commercially
common, I recommend using a value
of 0.3. Thus:

C 0.30

nock =

See Figure 7-3 for drag of

nocks at 200 fps for various
diameters and various tip
coefficients.

Total Drag

The total drag can now be
calculated. The total is the sum
of the parts. The item common to
all components 1is the velocity
pressure. Thus a single formula
for total drag is:

Dtotal = (Ceiphtip * Cwal1Awanr *

CéretchPfieteh * CnockPnock) X VP
Equation #7-8

Total drag sample calculation:

Assume previously stated values,
which were:

V = 200 ft/sec

L = 30"
e -

(R ST g # L) MY
D = 21/64"

Using suggested tip coefficient of
0.15 and using Equation #7-3:
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. : 2
CtipAtip = 0.15 x pi x D</4
Ceiphtip = 0-15 x 3.14 x (21in/64)?
)
- e

Using the wall coefficient
previously computed and using
Equation #7-4:
Cwa-lTAwa-” = 0.00409 x D'l DL
= 0.00409 x 3.14 x (21"/64) x 30"
” 2

CwaHAwaH = 0,1264 in
Using the fletch coefficient
previously computed and using
Equation #7=-5:
CfretchPfietch = 0.00195 LhN
= 0.00195 x 4,5" x 0.5" x 6

- i 2
CfretchPfletch = 0.0263 1n

Using the
coefficient
Equation #7-3:

suggested nock
of 0.30 and wusing

; . 2
CnockAnock = 0.30 x pi x D/4
= 0.30 x 3.14 x (21in/64)2/4

- £l

Using the above in Equation #7-8:

Dtotal = (Ctipatip + ChaltPwanr

CeretchPfletch * CnockPnock) X VP

From Equation #7-2 & sample
calculation:

VP = 46.6#/Ft2
Dygray = (0.0127 + 0.1264 + 0.0263
+ 0.0258)in2/148in2/Ft2 x 46.6#/Ft2

D = 0.06175# x 7000 grain/#
total _ e
Dtota1 = 432 grains.



Relative Importance of Components

The ratios of drag components are:

C xA Dra Fraction
(sq.in) lgri (%)

Tip 0.0127 24 6.7%
Wall 0.1264 286 66.2%
Fletching 0.0263 60 13.8%
Nock 0.0254 57 13.3%

Totals 0.1908 432gr 100.0%

See Fiqure 7-2 for tip and/or nock
drag (in grains) at 200 fps at sea
level for any diameter and any
coefficient.

See Table 7-1 for wall drag (in
grains) at 200 fps at see level for
any diameter and any length,
assuming full  turbulence. A
maximum deduct is shown if it s
felt that flow is not fully
turbulent.

See Table 7-2 for fletching
resistances at sea level at 200
fps.

M

Table 7-2 ... Fletching Resistance
at 200 ft/sec.

Laminar Turbulent
Length Number Drag Drag

(nominal)
3" 3-fletch 40 94
4" 4-fletch 63 163
g 3-fletch 54 151
Broadheads:
™ 2-blade 19 34
3-blade 28 50
Assumptions:

Fletch length is 1/2" shorter than
nominal,

Area of one side is 0.45" x (L-%").
Broadhead length = 1.0".

Broadhead surface area (both sides)
is 1.0 sq.inch per blade,

Suggested drag is "laminar".

Drag at other velocities:

For small changes of velocity, it
is reasonably accurate to assume
that the coefficients of drag
remain unchanged and that therefore
the drag 1is proportional to the
square of the velocity. In actual
fact, the coefficients for tips and
nocks do remain constant. The
coefficients for walls and
fletching depend, however, upon the
Reynold's numbers which, in turn,
depend upon velocity. The wall
coefficient is, per Equation #7-5,
mainly dependent upon Reynolds
number raised to the =-0.2th power.
Thus the resistance of the wall
depends upon velocity raised to the
2.0th - 0.2th = 1.8th power. A
similar analysis for fletching
yields 2.0th - 0.5th = 1,5th power,
Weighting each according to the
total for our sample arrow yields:

Tip 6.7% x 2.0th = 13
Wall 66.2% x 1.8th = 119
Fletching 13.8% x 1.5th = 21
Nock 13.3% x 2.0th = 27
Totals: 1007 180
Average "power" = 1,80th.

Thus this arrow's drag is

proportional to it's velocity
raised to the 1,80th power., For a
general rule, 1.85 is the power I
use, based upon similar
calculations for many arrows. Thus
the following formula for
converting drag at 200 ft/sec to
drag at any other speed:

Drag = (Drag @ 200fps) x
(Velocity/200fps)-85

Equation #7-9
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Table 7-3 ... Speed Multipliers

Velocity Drag Force
(ft/sec) Multiplier
300 fps 2.117
280 fps 1.864
260 fps 1.625
240 fps 1.401
220 fps 1.193
200 fps 1.000
180 fps .823
160 fps .662
140 fps .517
120 fps . 389
100 fps .277

Terminal Velocity

An arrow's free-fall terminal
velocity says more abtout it's
flight characteristics than does
drag alone. The total drag on an
arrow equals the arrow's weight
when the arrow is traveling at it's
terminal  velocity. Thus the
author recommends that the arrow's
terminal velocity be computed
immediately following the
calculation of the arrow's total
drag. The total drag applies to
only one speed. The terminal
velocity remains unchanged
regardless of speed. The formula
for calculating terminal velocity
is obtained by re-working the
previous formula and substituting
the arrow's weight for the unknown
drag. The result is:

Viterminal =

{J—" w/nrag)(1/1.85)

v
b1%g Equation 7-9

where
v ; = terminal velocity
*terminal - :

’diz gaveloc1ty at which drag was
compuged.

W, = weight of arrow
Drggrgwdrag computed at particular
velocity.
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Sample Calculation of Terminal
Velocity:

The total drag calculated for a
2117 x 30" arrow was 432 grains.
The weight of a 2117 x 30" arrow is
551 grains, according to Easton.
Using Equation 7-9:

Vsterminal =

200fps (551 gr / 432 qr)(1/1.85)

= 0.54
v’term‘ina'l = ZOO'FDS x 1,28
V'termina] = 200 fps x 1.14
Vsterminal = 228 fps.

This terminal velocity of 228 fps
for a 2117 x 30" arrow has been
confirmed by author's experiments,
as described in chapter on
Calibrated Flight Shooting.

Misaligned Fletching

The calculation of drag across
regular fletching assumes that the
fletching 1is rigid and that all
fletches are aligned in such a way
that the air passes over them
without having to change direction.
Flu=flu fletching does not satisfy
this assumption because it is not
rigid. Flu=flu will be discussed
later. For now, let's address the
question of misaligned fletching.

An example of misalignment
would be a case where two of three
fletches were aligned straight and
the other was aligned helically.
The air passing by obviously has to
change direction. The drag caused
by this is not a function of skin
friction, much as tip and nock drag
is unrelated to skin friction.
Rather, it is related to how much
turbulence 1is left behind. There
is no way to accurately predict how
much drag will be caused, but an
approximation can be made. The
basic formula given in Equation #7-
1 applies. Namely, drag =



coefficient x area x velocity
pressure, The coefficient is not
apt to exceed 1.0; nor is it apt to
be much less than 1.0, although it
could be. The "area" is the hard
thing to define. The area is the
cross-section area of disturbed
air. In the case of the example
where two of three fletches were
straight and the third was helical,
the area would be that seen when
looking along the axis of the
arrow. A calculation on the
assumptions that the coefficient
equals 1.0 and the areas equal, for
instance, 1/2" high x 1/8" "wide"
yields:

D=CAVP
1.0 x 1/16th in2 x VP

0.0625 in2 x VP

Comparing that number to those
computed for a 2117 x 30 regular
arrow shows that the drag caused by
misalignment could be quite large.

Broadhead Rotation

Fletching 1is spiral on broadhead-
tipped arrows. Fletching for
broadheads must be spiraled in
order to "average out" the steering
and/or planing effect of the
broadhead. The broadhead itself is
not spiraled. Thus the fletching
and the broadhead are fighting one
another. The broadhead wants no
rotation. The fletching wants the
rotational speed that it has when
flying with a target tip. There is
a certain amount of energy
dissipated by the fight between
fletching and broadhead.

I've seen archers with freely
rotating broadhead blades.
Doubtlessly, a freely rotating
broadhead will not only lose Tless
energy in flight but will steer
better as well.

To calculate the amount of
energy involved would be difficult.
The formula would be: energy Tloss
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= torque x rotational speed. The
rotational speed can be identified
rather easily, but the torque would
be much tougher to predict. None
the less, every archer who spins
his arrows (to check for
straightness) intuitively  knows
that the amount of torque caused by
a broadhead paddling the air is
very small.

Flu=-flu drag

Flu-flu fletching is not only
misaligned, but it also flaps 1like
a flag. The author tested the flu-
flu fletching shown in the photo.
The test was as described in this

book's chapter on "Calibrated
flight Shooting".
Resistance of the flu=flu

fletching as 2.8 times greater than
would be predicted for flat plates.
According to Sighard F. Hoerner in
"Fluid-Dynamic Drag" on page 3-25,
flags have greater resistance to
air flow than do flat plates by
factors of 10. Since only a
portion of the flu-flu fletching is
flapping 1like a flag and the rest
of it is stiff 1ike regular
fletching, the 2.8 increase seems
reasonable. At the same time, it
shows that an accurate prediction of
flu-flu resistance is difficult.

High Speed Flutter

Last night I was watching Tink
Nathan in his Adventure Video on
bowhunting in Australia. He
happened to mention that some
archers are experiencing fletching
flutter as a consequence of the
higher velocities being achieved
these days. That comment tied in
directly with the above discussion
of the fact that a flapping flag
has about 10 times as much
resistance as a rigid plane. It
makes sense. Personally, I haven't
been fortunatel enough to achieve
those 250 fps plus speeds.

Incidently, Tink Nathan sells



"Star Flight" fletching which
tapers symetrically front and rear.
It makes sense that such a shape
would be structurally more
resistant to flutter.

Parachute Drag

Were one to add a parachute to
the end of his arrow, the drag
formula would be same as for a tip
or nock, but the coefficient would
always be about 1.0. The fluffy
1ittle adders some hunters put on
their arrows to keep the arrow from
passing all the way through a
turkey, are like parachutes,
Assuming a coefficient of 1.0, the
formula for any type of parachute
drag becomes:

Drag = area x velocity pressure.

Equation 7-10

where area 1is as "seen" by the
airstream.

Tip Force: Amplifying Comments.

Earlier in this chapter I said
that the coefficients to use for
tip force were between 0 and 0.5,
but I did not say why. The amount
of  turbulence created by the
parting of air at the tip of an
arrow is what determines the amount
of energy Tlost. Any reasonably
steamlined tip will create almost
no turbulence as it gently parts
the air. A blunt tip might be
expected to create almost total
turbulence, which would result in a
coefficient of 1.00. As it
happens, though, even a blunt tip
is not that bad. What happens is
that a bubble of air builds up
ahead of the blunt tip, making the
combination of blunt plus bubble
act much 1ike a dome-tipped arrow,
The lack of importance of the tip's
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shape is evident in aircraft
design. Look an most any
commercial Jjet and you will see a
dome-shaped nose. I would guess
that the coefficients for either a
dome or a bullet tip would be very
close to zero. For a field tip,
which has discontinuities in it's
shape, I assume a 0.30 coefficient,

Nock Drag

The tail end of an arrow
doesn't actually drag. Rather, it
fails to restore full atmospheric
pressure. A totally blunt tail end
would leave almost total turbulence
in it's wake. It's coefficient
would be 1.00. A very streamlined,
pointed tail would Tleave very
little turbulence. It's
coefficient would be near zero. As
it happens, it is much easier to
part air without turbulence than it
is to put it back together again
without turbulence. A dome-shaped
tail is almost totally useless in
re-assemblying the air. Look at
any commercial jet aircraft and you
will see a long, slender tail.
That is what is needed to re-join
the air stream with minimum
turbulence. I simply guess that
the nock of an arrow has a
coefficient of 0.30. It may be
worse that that.

Tip + Nock
The Titerature always

considers the front and rear end of
an object simultaneously. It was
my own idea to consider them
separately. In the case of an
arrow, what happens at the tip is
so far removed from the tail that
it struck me that they should be
evaluated independently. Were tip
and nock considered simultaneously,
the worst case would be where the
tip had a coefficient of 1.0 and
the tail had the same, for a total
of 2.0. In Vennard at’a Reynold's
number of 34,000 I found the



following combined coefficients:

1.90 ... flat plate of infinite
length traveling sideways.

1.20 ... for a cylinder going
sideways

1.20 ... for a flat disc.
0.50 ... for a sphere.
0.08 ... for a streamlined strut.

0f the shapes mentioned, the tip
plus the nock of an arrow probably
most closely resemble a sphere,
which has a coefficient of 0.50.
My assumptions of 0.15 for a field
tip plus 0.30 for a nock would be
0.45, which is close to that of a
sphere's 0.50, I throw tnis in
just to lend a little weight to my
guesses.

Steering Drag

A11 the preceding analysis in
this chapter assume that the arrow
is flying straight. It does not
tell what the drag consequences of
a porpoising or fishtailing arrow
might be. Even a straight flying
arrow has to be steered. An arrow
shot on the moon will hit with the
same up-angle it had when
launched. Fletching on the moon
would be useless. An arrow in air
has to be continuously re-aligned
as it arches through the air.

William Bollay's "Air
Resistance of Trains, Automobiles
and Ships" copies Schmidt, (ZvdlI,
82, 1938, p. 188) to show that the
resistance of a non-streamlined
train may be doubled when the
relative wind comes from an angle
of yaw, although that of the
streamlined train remains
practically constant. I throw this
out simply as an area for further
study.

I would suggest the following
experiment and may, if I get the
time, actually conduct it:
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Put an arrow velocity meter
down range 20 or 30 yards. Shoot
arrows from a well-tuned bow.
Note the velocity. Shoot same
arrows from same bow but Tlocate
nocking point so as to cause fish-
tailing. Note loss of velocity, if
any. Any loss is due to
fishtailing. Repeat with arrow
meter close to Taunch point to
confirm that velocity loss happens
during flight, not during launch.

Boundary Layers

When air flows along a
surface, a boundary layer builds up
between the surface and the remote,
undisturbed air. I wasn't able to
find any prediction of what the
thickness of a boundary layer
around an arrow shaft would be, but
the thickness of boundary Tlayers
over flat plates were well
documented. For laminar flow the
formula is:

T = 5.2L/Re*
& for turbulent flow it is:
T = 0.37L/ReY-2

where:

T = thickness, with same dimensions
as IILII.

L = length from starting point.

Re = Reynold's number.

For an arrow's turbulent flow along
it's wall, the thickness computes
to be greater than 1/2". Thus the
fletching would be totally engulfed
in boundary layer. What that might
do to the calculation of fletching
resistance is unknown to me. I
would guess, though, that it would
reduce the fletching resistance
because the air passing over the
fletching is being dragged
along with the arrow, reducing it's
relative velocity over the
fletching.



Wind Tunnel Data

"Rheingans reported that Rear
Admiral Moffett (of Moffett Naval
Air Station fame) conducted a wind
tunnel experiment on an arrow the
following characteristics:

Head = ogival.
Length = 26".
Diameter = 5/16". L
Fletch = 3-feather x 2%" with
total area = 7.5 square inches
Velocity = 200 ft/sec.
With feathers removed:
Drag = 112 grains.
With feathers on:
Drag = 273 grains.

Comparison with predicted for the
shaft without feathers is:

Tip (.05), Fig.7=2 = 9 gr.
Nock (.3), Fig.7-2 = 52 gr.
Shaft, Tbl 7=-1 = 242 gr.
deduct, Tbl 7-1 = =37 gr.

Sub-total = 266 gr.

Fletch, Tbl 7-2 44 qgr.
Total = 310 gr.

This result is rather amazing in
that the total resistance 1is not
too far off, but the components are
way off,

Back-calculating the bare
shaft result forces one to the
conclusion that flow along the
shaft was laminar. Yet the
literature says that flow should
definitely be turbulent. Perhaps
in the quiet wind tunnel
environment there was no "trigger"
to start the turbulence.

Back-calculating the fletching
resistance, which was 272-112 = 160
grains and comparing it to the 44
grains predicted leads to the
conclusions that flow was not only
fully turbulent but has resistance
50% higher than full turbulence! I
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strongly suspect that misalignment
caused this high resistance. An
arrow in free flight will tend to
rotate at whatever speed gives best
alignment. Chances are the admiral
had to hold the arrow rigidly in
place, preventing it from rotating
and thus aligning.

Summary Comments

In studying the theory of
aerodynamics and of fluid drag I
become aware of how very
complicated the topic is.
Repeatedly the authors tell the
reader that tests have to be
conducted to verify. Drag
coefficients do surprising things,
such as suddenly dropping or
suddenly increasing. The Reynolds
numbers applicable to archery are
right in the middle of where
transitions between Tlaminar and
turbulent occur. The strange
things that happen include:

In aircraft, the wuse of
fillets at the junctions of wing
and body make a huge difference.
The same concepts might apply to
fletching.

Little bumps to cause boundary
layer tripping are used in
aircraft; maybe the concept would
apply to arrows.

Removal of boundary layer so
as to keep flow laminar is done in
aircraft. Perhaps a perforated
shaft with open rear end could do
the same.

Dimpled golf balls have only a
tiny fraction of the resistance
that smooth spheres have; perhaps
dimpled arrows would do the same.

The boundary layer thickness
of the arrow shaft upon arrival at
the fletching may or may not engulf
part or all of the fletching.

There is a lot of room for
further study!

*kk END *¥%
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za"

24"

25“

26"

27

28"

29"

32"

33"

38"

Table 7-1 WALL DRAG OF ARROWS (gqrains) B 200 FPS
ARROW'S DIAMETER (inches)

13% 7@ 1se  1¢ a7t 9% pgr P 210 117
6 32 [ 4 64 32 [ 16 64 32
142 152 161 171 181 180 200 210 219 229
118 126 134 142 149 157 165 173 181 189
28 30 32 35 37 39 41 43 45 47
148 158 168 178 188 198 208 218 228 238
124 132 140 148 157 165 173 181 189 198
29 31 33 35 38 40 42 44 46 49
153 164 174 184 195 205 216 226 236 247
129 138 147 157 167 178 188 199 209 219
29 32 34 36 38 a1 43 45 47 50
159 170 180 191 202 213 223 234 245 256
135 144 153 162 171 180 189 197 206 215
30 32 35 37 39 41 44 46 48 51
165 176 187 198 209 220 231 242 253 264
141 150 159 169 178 187 196 206 215 224
30 33 35 38 40 42 45 47 49 52
170 182 193 205 216 228 239 250 262 273
147 156 166 175 185 195 204 214 223 233
31 33 36 38 41 43 45 48 50 53
176 188 200 211 223 235 247 258 270 282
152 162 172 182 192 202 212 222 23?2 242
32 34 37 39 41 44 46 49 51 54
182 194 206 218 230 242 254 266 279 291
158 168 178 189 199 209 220 230 240 250
32 35 37 40 42 45 47 50 52 55
188 200 212 225 237 250 262 274 287 299
164 174 185 195 206 217 227 238 248 259
33 35 38 40 43 45 48 50 53 55
193 206 219 231 244 257 270 283 295 308
169 180 191 202 213 224 235 246 257 268
33 233 33 33 33 33 33 33 33 33
199 212 225 238 251 264 277 290 304 317
175 186 198 209 220 231 243 254 265 276
34 36 39 42 44 47 49 52 55 57
205 218 231 245 258 272 285 298 312 325
181 192 204 215 227 239 250 262 273 285
34 37 40 42 45 48 50 53 55 58
210 224 238 251 265 279 293 306 320 334
186 198 210 222 234 246 258 270 282 294
35 38 40 43 46 48 51 54 56 59

Highest drag number assumes
Middle drag number assumes partial turbulence flow,.

Smallest drag number assumes fully laminar flow.

full turbulence flow.
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239

248
206
51

257
230
52

266
224
53

276
233
54

285
242
55

294
2h2
56

303
261
57

312
270
58

321
279
33

330
288
60

339
296
61

348
305
62

3li

249
204

258
214
53

268
240
54

277
233
55

287
243
56

296
252
57

305
261
58

315
)
59

324
280
60

334
289
33

343
299
62

352
308
63

361
317
64



TRAJECTORIES WITH FRICTION

Three different sets of calculations
apply for three different types of
trajectories:

a) Friction=-free trajectories,
see Chapter 6.

h) Trajectories with friction &
small launch angles.

c) Trajectories with friction &
large launch angles.

The friction-free trajectories have
formulas to totally describe them,
as given in Chapter 6,
"Trajectories, Frict‘onless".
Trajectories with friction and small
launch angles (up to about 6°) can
be calculated by ignoring vertical
friction and using an exact formula
for horizontal friction,
Trajeclories with friction and large
launch angles (more than 6°) have to
be  broken into multiple small
segments. This is practical wusing
computers but is not practical using
long hand.

TRAJECTORIES WITH FRICTION & SMALL
LAUNCH ANGLES

I tried but failed to derive
equivalent exact formulas for flight
with friction. 1 was, however, able

to come up with the exact
description of horizontal
deceleration, lsing the exact
formula for horizontal deceleration

with=friction plus the exact
formulas gqiven 1in Chapter 6 for

friction-free vertical accelerations
gives nearly exact results when used
with small launch angles. In all
crdinary archery, the amount of
vertical speed loss caused by air
drag is very smell, For example,
when shooting 100 yards with a 200
fps arrow, the initial vertical
speed 1is about 24 fops, Halfway to
the target vertical speed is zero.

Average vertical speed is 12 ft/sec.
The relative importance of friction
in the horizontal and vertical
directions 1is

1595’ Ty
%ﬁ,{%) - /654" =180

Thus vertical friction can be
ignored with negligible error when

shooting horizontally at  ranges
under 100 yards.

For the engineer or
mathematician who wants to take up

where [ left off, the differential
formula for vertical travel with
friction, which I am unable to

integrate is:

4y, —jl-[.»u' Vgllss :}‘é%f‘

The introduc of gravity and the
deceleration to zZero upward
velocity, and the subsequent
acceleration downward to terminal
velocity is quite beyond my ability
to integrate.

Horizontal Deceleration

The slowing of a ship which has
lost power or of a car that has been
put 1in neutral or of an arrow which
has magically been prevented from
droppinag can be computed from the
formula: N>

V= (V 0,5—0 lskx)alg

Equation #8-1

where V velocity at point "x"

Vo

velocity, oriaginal
k = constant,

Df/Vol-85

"

drag

m = mass
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(2)

This formula was developed for me by
Assistant Professor Van P. Carey of
the University of California
Mechanical Engineering Department in
June 1986, I had developed the
following differential formula but
was unable to integrate it:

= (=k/m)v?-854y

That formula was, in turn, derived
from the following as follows:

1) dx = Vdt, a definition of

velocity
dV/dt = DF/m, from law of physics:

F = ma
/.85
(15) ])F= L:‘«; ) rTwnnJruj

force analysis in previous chapter,

Eliminating Dg from the last two
yields:
; cypeal OB <
dv/dt = (k/m)(V***¥), which
says that deceleration is

proportional to velocity to the 1.85
power.

Eliminating dt from the first and

last formulas yielded:

085
dVv = ( ) ;éh&‘ which says

that ve1oc1ty loss per yard is
proportional to velocity to the 0.85
power.

The professor 1nteqrated this to get

- (%"~ .15 KK)O'S'

Equation #8-1.

Energy Loss:

The problem with using Eqn (8-1)
while meaning to ignore vertical
friction is that energy 1loss is
proportional to the square power of
total velocity, not just the
horizontal component of  total
velocity. Midway through the
arrow's flight, however, the total

velocity and the horizontal
component are the same. In the
interest of simplicity, the error
introduced shall be ignored. At
worst, an error of about 1% Tless
energy loss than actual will prevail
for the sample case of a 200 fps
arrow at 100 yards, 358 grain drag,
K46 grain weight.

Sample calculation of speed & energy

loss:

is per sample in Chapter
28" lonag, with

Arrcw
7, which was: 2117,
field point,
Vo = 200 ft/sec.
Drag = 386 arains of force
Weight = 527 grains of weight.

k = D/Vol-85
3 80 gnasna = i
(aptttlsec)” #4045

4}~ 0.5 0,15 x 3¢ D27
|05 rﬁﬂ

Vi e (Q.Q.HL - 0092 |96 x> o

-
I

For x = 10 yds = 30 ft,

L [

2.1s —_
. -0,000196%30) z22]°"
o 4 = (2-210 )~ ez

VlO yd ~ 196.5 ft/sec
Velocity loss = Vo = Vlo yd
= 200.0 - 196.5 = 3.5 ft/sec

Energy loss, percent =

109% (Va* Vs st * 3,57

Repeating at ten yard intervals and
tabulating yields the followinag
table.

Page 8-2.



TABLE 8

TABLE OF ENERGY & VELOCITY LOSS VS. RANGE

-1

Arrow = 2117, 28" long, 527 grains weight
ft/sec, 5" plastic 3-fletch.

, 386 arains drag at 200

Range (yards) 0 20 40 60 80 100
Velocity (ft/sec) 200 192.5 186 180 173 167
Specific energy (ft-1b/1b) 621 579 539 501 466 434
Velocity loss (%) 0 3.5 6.9 10 13.3 16.4
Energy loss (%) 0 6.8 13.3 19.3 24.% 30,2
ELEVATION ANGLES WITH FRICTION Ean (6-5): t =(2 Vo sin A)/a.

Back in Chapter 6 the elevation

Solving for £ yields:

Egn (8-2): A = arcsin (tq/2Vo)

Procedure for Calculating Time of

angle needed to fire a frictionless
arrow at a horizontal target was
given as:

& = % arcsin (Rg/V%),

Flight & Elevation Angle

Equation #6-11
A similarly clean formula would be
nice to have for elevation angles
with friction, but this engineer
hasn't found one. However, by
combining the formula worked out
earlier for horizontal friction,

which was:
ix = (Vou>"%-0.15 K X/m)

Equation #8-1

N
0.5 IS
“ —

with the formula for frictionless
vertical travel, which was:

y =t Vo sin A - % gt2,
Equation #6-1

One can compute the necessary
elevation angle with friction. The
approach to use 1is as follows:

First find out how long it will take
for the arrow to travel the distance
to the target. Then figure out what
elevation angle 1is needed to keep
the arrow 2loft that long, The
answer is computed from:

Page 8-

3 5 Compute elevation angle for
frictionless flight from:

Eqn (6-11): A = % arcsin (Rg/V2)

2nd: Compute initial horizontal
component of velocity from:

Vo,x = Vo cos A
3rd: Compute 1st approximation of
time of flight, idgnoring friction,
from:

t = R/Vo,x
4th: Compute velocity upon arrival

at target using:

VR==[?\L ccai§>0J5:-

1
015
0.5k X

"

average horizontal
(Vo,x + Vp)

5th: Compute
velocity using Vx

6th: Compute 2nd approximation of
time 2loft from:

t = R/V

3.



7th:  Compute elevation angle from:
Eqn (8-2): A = arcsin tg/2Vo

8th: Repeat steps 2 thru 7 if
needed for greater accuracy using

angle computed in step 7 above.

Sample Calculation

Arrow = 2117, 28" long, 200 ft/sec,
weighing 527 grains and having 386
grains of drag at 200 fps. Compute

100 yard elevation angle.

1st: A = % arcsin Rg/V2 y
I 300ftx32.2 f1/5ee”
e [(aoo-ﬁ‘/sn)z
- L onesin 0.24157 % x13.98%4£99°
2nd: Vo,x = Vo cos A -ZOOEGMG-WO
= 198.5/ ft/sec
3rd: t = R/Vo,x

300 ft/198.51 ft/sec

]

1.511 sec

ath: Vp =[((‘!8.51%>

0. 15 x 386 132.2‘%&‘-.,-
Gthy ¥ = (a.;uw -0.05‘8'74)
= (65,4 ft/sec

t = R/V
300+

182.2Ft/sec
arcsin  tg/2Vo
1647 aee « 32.2 {H/52c®
2 vao0o01t/sec
~ anedin 0,265 = 762° <A
(first try)

0.5

-—

0.5

8.5

6th:

» | 64T sec

il

7th:

a/esin

-
-
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8th: Repeat and compute A = 7.63°

(final try)

Pin Sights

One reason I wanted to know the
elevation angle for any given range
was so as to know what the relative
spread between sighting pins should
be. The distance between pins (for
ranges beyond 30 yards and up to 100
yards) should be proportional to the
differences in elevation angles, In
Chapter 6, for frictionless flight,
the formula was given as:

Eqn (6-12): dR/dA = (-2V2/q)cos 2A

There is no equally convenient
formula for flight with friction, so
data must be tabulated. See Table

8-2. Studying the "difference" data
for elevation angles with and
without friction shows that
"gapping" between sighting pins is

hurt by friction. For instance, the
angular difference between 20 yd and
40 yd without friction is 1,388°;
between 40 yd and 60 yd it s
1.394°, a ratio of 1.004, or 4/10%.
The numbers with friction are
1.462°, 1.519°, 1,039, or 3,9%.
Even so, interpolation between pins
is accurate enough for all practical
purposes beyond 30 yards.

4-
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TABLE 8-2 ... ELEVATION ANGLES WITHOUT & WITH FRICTION

Arrow is 2117 with 5" 3-fletch with
field point weiaghing 527 grains and

having drag of 386 grains at an
initial velocity of 200 ft/sec.

Range (yds)

Without Friction:

Elevation angle (degq)
Time of flight (sec)

Cifference

With Friction:

Velocity, arrival (fps) 200

Time of Flight (sec)
Elevation angle (deg)

Difference

0 20 40 60 80 100
0 1.384° 2.772 4,166 5.570 6.988
0 0.300 0.601 0.902 1.206 1.511
1.384° 1.388° 1.394 1.404° 1.418°
192.97 186.03 179.17 172.38 165.66
0 0.305 0.622 0.951 1.293 1.649
0° 1.409° 2.871 4,390 5.973° 7.628°
1.409° 1.462 1.519” 1.583" 1.6557

Under 30 yards, parallax caused by
height of eye above

errors.,

As an example, bhalf way between the

arrow causes

40 yard pin and the 60 yard pin
should be the 50 yard pin. Running
the numbers out shows that half way
between is actually 50.10 yard,
which is close enough,.

TRAJECTORIES WITH FRICTION & LARGE

Packard HP41CY hand held

LAUNCH ANGLES

If there exists
formula for calculating directly the
projectile with get the data for a

motion of a

friction, I could neither find it
The only way to get want to know all about a flight of

nor derive it.

the answers, then, is to divide the
flight into little parts and compute
the entering and leaving
of each part. For
accuracy I found it
divide the arrow's
intervals of 1/20th of
Even with a computer,
awful lot of computations
The program I wrote for a

satisfactory
necessary to
flight into

programmable calculator with printer
(published herein) takes about 30
minutes to compute & single flight,
Worse, it takes trial and error to
particular
flight. Say, for instance, that you

a simple

220 yards., You have to gquess at a
launch angle and then compute until
conditions the arrow hits the aground at some
range. Then try another angle and
do it over again. I've done this and
published the results in Figure

a second. 8-2 . The mathematical procedure is

there are an as follows, with sample calculation:
involved,
Hewlett-
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Enter Starting Data:

V,o0 = velocity @ launch = 200 ft/sec
A,o = angle of launch = 45°
W = weight of arrow = 527 grains
D,o = drag at launch velocity

= 386 grains
TD = time increment for each segment

= 0.05 seconds

Calculate Drag

D = drag at beginning of interval

]

D = D,0(V/V,0)1-8°
= 386 gr (200/200)1:8°

= 386 grairs

Compute Accelerations:

a = acceleration due to drag
a = (D/Wg (38on 32 Z:L
6f71n-
= 23,58F/sec®
a,x = acceleration due to draag,
horizontal component
da,x = a cos A fij .
4

= 23,58 Sec? s

- 16.68/sec®
a,y = acceleration due to drag,
vertical component (always resists

diriéfigij
Qrrow 1is traveling and thus

changes from = (-) to (+) during
flight.
a,y = a sin A

23.56 ft/sec?? sin 45°

a,y = I6.68ft/sec2

g,net = gravitational acceleration,
net, after being resisted by drag.

g,net = a,y +g
= (~16.68~ 312_ z)
= _4? 38 ‘56:.

Compute Velocity Components

Vx = velocity, horiz component =V
cos A = 200 fps x cos 45° = 141.42
fps.
Vy = velocity, vert component = V
sin A = 200 fps x sin 45° = 141.42
fps.

Compute location at end of interval

¥x = horizontal distance from launch
point

X ,0 + V,X TD - Lax(TD)?
O¢44l42 - X0.,05aec .
f*
= 0;5 = lécégsec (o 06-56":)

2 0 ¢7.07/fF -0.03 (+ = 7.050ft

launch

n

y = vertical distance from
point

y = y,n=-1+V y D - kg,net (TD)?
= 0+ ‘{2 x0.05 sec —
O.S‘x‘f&?s (O 0559«:._)

=0 +7.a7/~a.o¢/ = 7.010¢TF

Note: Note if elevation difference
is plus or minus for future
determination of new angle.

Compute Vx at end of interval

VX "—\/x,n"l a.}x _P‘F{‘
H/.q’:z ; ~ 1668 55;7*0- Ogﬁf*'-
- 14l & -o.83 2 - 140595,
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Compute Vy at end of interval
2

"

Vy Vo,y2 - 2g,net(y,n-y,n-1) where

ysn = elevation at end of interval

y,n=-1 = elevation at start of interval
2

Vy (141.42Ft/sec)2 - 2 x 48.88 ft/sec2 x (7.01 - 0)ft 19,315ft2/sec2

Vy = 138.98 ft/sec

Compute new angle

A = arctan (Vy/Vx) = arctan (138.98fps/140.59fps) = arctan 0.989 = 44.67°

Refer back to new elevation calculation to ascertain if new angle
is plus or minus.

Compute new velocity

v2 = yx2 + vy2 = (140.59ft/sec)? + (138.98ft/sec)? = 39,081 ft/sec?

Vv = 197.69 ft/sec

Compute New Time

Add time difference to total time since Tlaunch,

t =0+ 0.05 sec = 0.05 seconds.

Repeat for next interval

)1.85 - 386(197.69/200)1:85

D 378 grains

n
o
o

—
-
~—
-
o

23.08 ft/sec?

a = (D/W)g = (378/527) x 32.2
a,x = a cos A = 23,08 cos 44.67° = 16,42 ft/se02

a,y = a sin A = 23.08 sin 44.,67° 16,23 ft/sec2

g.net = a,y + g = (=16.23) + (-32.2) = -48.43 ft/sec?

Vox = V cos A = 197,69 cos 44.67° 140,59 ft/sec

Vo,y = V sin A = 197.69 sin 44,67° 138.98 ft/sec
X = Xyn=1 + V,x TD = }a,x (TD)2 B

7.05 + 140.59 x 0.05 - 0.5 x 16.42 x (0.05)2 = 14.06 ft

>
0]

y = y,n=1 + Vy TD - %g,net (TD)2
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y = 7.01 + 138.98 x 0.05 - 0.05 x (-48.43) x (0.05)2 = 13.90 ft

V,x = V,x,n=1 - a,x TD = 140.59 - 16.42 x 0.05 = 139.77 ft/sec
V,y2 = V,y,n-12 - 2g,net (y,n - y,n-1)

V,y? = 138,982 - 2 x (-48.43) x (13.90 - 7.01) = 19,315 - 667 = 18,648

V,y = (V,y2)% = (18,648)% = 136.56 ft/sec
A = arctan(V,y/V,x) = arctan (136.56/139.77) = arctan 0.98 = 44,33°

v2 = v,x2 + v,y2 = 139.772 + 136.562 = 19,535 + 18,648 = 38,182
Vo= (V@)% = 195,40 ft/sec

t = t,n=1 + TD = 0.05 sec + 0.05 sec = 0.10 seconds

Repeat for 3rd interval and so on and so on.

Terminal Velocity

The topic of terminal velocity falls into the category of
"trajectories with friction" because an arrow falling straight
down at terminal velocity is the final state of an arrow's
trajectory if such arrow has been fired from a high cliff. Drag
force equals arrow weight when arrow is dropping at terminal
velocity. For the sample arrow weighing 527 grains and computed
to have a 386 grain drag at 200 ft/sec, terminal velocity is
given by the formula:

Eqn (8-3): VT = VO(N/D)I/I'BS
V1 = 200 ft/sec (527 qr/386 gr)1/1-85 = 200 ft/sec x 1.183

This arrow, then, if shot straight down off a c1iff would pick up
only a 1ittle speed. An identical looking arrow but one having a
thinner wall so as to weigh only 386 grains would neither gain
nor lose speed if shot straight down off a cliff. An arrow with
flu-flu fletching would slow down.

Computer Program

A print-out of a computer program to perform the calculations
follows. This program is for a Hewlett Packard HP41CV equipped
with or without printer., The program may be changed to display
intermediate results if desired and/or to have the trajectory
continue downward after reaching zero elevation. As-is, the
computer will (if a printer is attached) compute trajectories
starting at whatever launch angle is initially entered and
continue until lTaunch angle equals 49°, The final data printed
out for each trajectory is the angle at which the arrow hits the
ground at zero elevation, the range, the final velocity, the
fraction of initial energy remaining, and the time of the flight.
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K?DEEgBGEPS <G— L AUNCH v;.?.f.rzlr::zr';"s/J MEDIUM FAST
T.¥.=258 FPS<+  WEIGHT OF 2]I7 %30 w |25 8R HEAD

DRAG=359 GR= TERMINAL VELCCITY IN FREE FALL OF

D/W=8B.662 \ A 21171 *x 3T w (3) B"FLeTCH (APRIX.D)
DRAG (INITIAL) FROM AIR FRICTION

A=39.B6DEG ___J_;_ - Vo \/- 85
HIT=-48. 7DEG \A/ W)

L=276.8 ¥D /
vY=138.1 FFS ;i
E=47.7% - LAUNCH ANGLE

T=7.81 SEC /f-JIT'-THE-G'?QL’NE? ANGLE

A=40.88DEG = i/ f
HIT=-49_S8DEG<— /'~ VELCCITY UFON AF?RI\\{AL
L=277.8 YD < .  ARRIVAL ENERAY ={'/_\£."f~r,-'-,li'
V=138.3 FPS €« Vo /
E=47.8% - 3 i @ ATIE & ~FE O ELIaH T

_____ 5 ;

T=7.16 SEC<

A=41.080DEG -«— | AI'NCH ANGLE FOR MAX, RANGE
HIT=-58.9DEG

L=277.9 YD =—— MAX/MUM RANGCE

¥=138.5 FPS

E=48.08%

T=¢7.29 SEC

H=42.88DEG
HIT=-351.9DEG
L=277.8 YD
¥=138.8 FPS
E=4q48. 2%
T=7.42 SEC

H=43.088DEG
HIT=-53.6DEG
L=277.5 YD
vV=139.1 FPS
E=48.4%
T=7.55 SEC

A=44_.8B0DEG

HIT=-54.8DEG Fl‘gurc 8 -7

L=277.8 ¥I

¥=139.5 FPS COMPUTER MODEL FOR FLIGHT
E=48.6% SHOOTING AN ARROW FROM LAUNCH
T=7.68 SEC ANGLES OF 39° THROUGH 45°
A=45.86DEG Thomas L. Liston, P.E.
HIT=-55.8DEG Mechanical Engineer
L=276.1 ¥D June 1987

V=139.8 FPS

E=48.9%

T=7.81 SEC
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81+LBL =DRAG"

.85 STO @S 8 ST0 86
ST0 67 STO 18 |
ST0 13 FS? 55 SF 21
SF 12

13+LBL 88
FIX 8 RCL 8@ CLA
ARCL 88 "k FPS2"
PROMPT STO 88 CLA
ARCL X *F FPS" AVIEW
STO 89

26¢LBL 81

RCL 81 CLAR ARCL 81

*F DEG?* PROMPT STO 81
STO 88

34¢LBL B2

RCL 82 CLA “WT=*

ARCL 82 -+ GR?" PROMPT
ST0 82 CLA "NT="

ARCL X *F GR* AYIEM

47¢LBL 83

RCL 83 CLR *DRAG="
RRCL 83 "k GR?" PROMPT
STO @3 CLA ~DRAG="
ARCL X =k GR* AYIEN
RCL 82 7 FIX3 ~“D/H="
ARCL X AYIEW

66¢LBL 84

67¢LBL 83
RCL 82 RCL 83 / 1.85
I8 YtX RCL 68 +»

FIX 8 CLR -T.v.="
ARCL X =k FPS" RAVIEW
RDY CF 21

84¢LBL 86

CF 21 =DRAG* RCL 89
RCL 88 + 1.85 vtx
kCL 83 * STO 11

95+LBL 87
“RCCELERRTIONS® RCL 11
RCL 82 7 32.2 &

STO 12 RCL 88 €05 #
ST0 14 RCL 12 RCL 88
SIN & CHS -32.2 +

$T0 15

113¢LEL 88

“Y,X ¥,Y" RCL 89

RCL 88 COS * STO 16
RCL 89 RCL 88 SIN +
ST10 17

127+LBL 89

“X* RCLBS 2 v

RCL 14 * CHS RCL 16
+ RCL 85 * ST+ 07

146+LBL 18

CLR =Y= RCL B 2 /
RCL 15 * RCL 17 +
RCL 85 * STO 13

ST+ 86 X(=87 XEQ 2@
FIX 1 *HT=" ARCL @6
AYIEW

168+LBL 11
*¥.Xx* RCL 85 RCL 14 =
ST- 16

1664LBL 12

*¥.Y" RCL 18 RLL 15 =
2 % RCL 17 Xt2 +
SERT 570 17

178+LBL 13

"R* RCL 17 RCL 16 ~
RTAN RCL 13 #* ST0 88
FIX 2 FC? 55 VIEW X

198+LBL 14
“¥* RCL 16 Xt2 RCL 17
Xt2 + SQRT STO 89

199+LBL 15
“T* RCL 85 ST+ 10

283+LBL 16

"REPEAT* RCL 86 %{=0?
GTO 21 RCL 86 STO 19

RCL 87 STO 28 RCL @8

ST0 21 RCL 89 STO 22

RCL 18 STO 23 GT0 86

219¢+LBL 20
-1 STO 13 RTN

223+LBL 21

“HORIZ* RCL 19 RCL B4
- RCL 19 7 1/

STO 24 RCL 87 RCL 29
- RCL 24 * RCL 28 +
ST0 25 RCL 88 RCL 21
- RCL 24 * RCL 21 +
ST0 26 RCL @9 RCL 22
- RCL 24 * RCL 22 +
STO 27 Xt2 RCL 68 %12
/ 188 * S§TD 28

RCL 18 RCL 23 -

RCL 24 + RCL 23 +
ST0 23
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271eLBL 22

FS? 55 SF 21 BEEP

FIX 2 CLA =R=-

ARCL 81 ~FDEG* AVIEW
FC? 55 STOP CLA FIX I
"HIT=" ARCL 26 *FDEG"
AYIEW FC? 55 STOP

FIX 8 CLA *L="

ARCL 25 ~F FT= RAVIEW
FC? 55 STOP CLR -vy=-
ARCL 27 ~F FPS" AVIEW
FC? 55 STOP CLA “E=*
ARCL 28 *F%Z* RYIEW
FC? 35 STOP FIX 3 CLA
“T=" ARCL 29 - SEC"
AYIEK FC? 55 STOP ADY

322¢LBL 23

1 ST+ 81 @ STD 8%

STO 87 STO 18

STO 13 RCL 8@ STO @9
RCL 81 STO 83 49

RCL 81 X>Y? BEEP X)Y?
STOP GTO 86 END

LBL "DRAG
EHD

616 BYTES
-END.
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DRAG=116 GR
D u=8. 264
T.¥.=413 Fps
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ARROW STRUCTURAL STRENGTH

Shaft Strength:

When an arrow 1is shot, the
arrow accelerates in three
directions: forward, left and down.
Why 1left and down? The answer to
that question 1is covered in the
chapter on arrow vibrations. For
now, let us examine the acceleration
forces involved in the straight=-
ahead direction.

Forward Acceleration Forces:

When an arrow is fired,
tremendous accelerations are
involved. These forces verge on
destroying the arrow. Just how

strong are these forces? It
depends. One might expect the
forces would be the same as measured
on the bow's force-draw curve. Long
bows and/or recurve bows develope
maximum pull when drawn fully. Were
one to shoot a very heavy arrow (a
crowbar on roller skates, for
instance) with a 60# recurve, the
initial push would be 60#. As the
crowbar began moving, the force of
the bow string pushing against it
would diminish in the same way the
forces diminish as an archer "lets
down" his bow without firing it.

The "g" forces involved would
depend upon the weight of the
crowbar. If it weighed 60# and were
fired from a 60# bow, the 1initial
"g" force would be 1.0-g. If the
crowbar weighed 30#, it  would
accelerate twice as fast, or 2-g's.
Were it a real arrow weighing 539
grains or 0.0770#, the acceleration
would tend toward but not reach
60#/0.0770# = 779-g's! The initial
force addressed to the nock of an
arrow is almost equal to the bow's
static force at full draw if the
arrow's weight greatly exceeds the
bow's virtual mass. If the bow's

virtual mass equaled the arrow's
weight (on the other end of the
spectrum), the initial force would
be 50% of full draw weight.

The initial load imposed on the
nock of an arrow, then, approaches
the 1load that would be imposed if
the arrow were used to hold the bow
at full draw. You might try putting
a strung arrow against a block and
then pushing the bow. You might,
but you had better not: The arrow
will break, probably causing injury
and damage. The author tried
nocking an arrow and gradually
pushing against a block. When the
bow was about half way drawn it
became obvious that the arrow was
becoming unstable and would break if
the experiment were continued. Why,
then, doesn't the arrow break when
fired? Because the load carried by
the shaft is 60# at the nock but
diminishes along the arrow's length,
becoming zero at the very tip. Why
does the force diminish along the
arrow's length? Because:

Force = mass x acceleration.

The acceleration is the same along
the entire length of the arrow. The
mass ahead of the force is less and
less along the 1length, however,
until there is no more mass left at
the very tip.

In the following fiqure, we will
take an actual arrow's weight
distribution, as described in Easton
Aluminum Hunting Shaft Selection
Chart, as follows:

Broadhead . siseiei iensasne 125 grains
Insert ..eeeeveeeseessss 30 grains
2117 shaft, 29" long ... 349 grains
Nock & fletching ........ 35 grains

Total = ....... 539 grains = 0.0770
pounds.

Page 9-1.



A 60# recurve bow would probably
address a peak "push" of about 48#
at the arrow's nock. Five inches
down the shaft, the nock, fletching
& 5/29.75ths of the shaft are
behind. The mass ahead has been
reduced to 445 grains, and the
accelerating force has been reduced
to 48# x (445/539) = 40#. At the
base of the broadhead the mass ahead
has been reduced to that of the
broadhead alone, or 125 grains. The
propelling force here is 48# x
(125/539) = 11#.

Buckling of Column Under Own Weight

The analysis of strength needed
to tolerate huge accelerations would
be the same as the analysis of a
column's buckling under it's own
weight if the arrow had no tip. R.
Frisch-Fay, Lecturer in Civil
Engineering at the University of New
South Wales in his book, "Flexible
Bars" published by Butterworths,
Washington, 1962, does devise a
formula, which is:

W = 7.84 EI/L2

*critical
= critical shaft weight.
When fired from a bow whose string

delivers a thrust of 48 pounds, the
arrow actually "weighs" 48 pounds.

Slender Columns

The arrow tip's weight s
transmitted through the entire
length of the arrow during
acceleration. Thus, the ability of
the shaft to accelerate that tip is
comparable to the ability of a
slender column to carry a static
load. The formula for the critical
load which can be carried by a
slender column without buckling is:

Wi pi%EI/Le =
, 1
critica?r%$5c%eight

Structural engineers developed
the phrase "slender column" to
predict when a column needs lateral
bracing to prevent buckling. An
arrow being fired is in a similar
but different situation. It is
similar because the arrow 1is
subjected to forces which will
definitely cause it to buckle. It
is different for two reasons. One
is that the launch 1is completed
before the arrow has a chance to
buckle to the point of permanent
deformation. The second difference
is that the forces being carried by
the arrow's shaft vary from tip to
nock, whereas a structural column
carries the same 1load throughout
it's length. The load carried by an
arrow shaft is maximum (about 48#
when fired from an 60# bow) at the
nock and diminishes to zero at the
arrow's tip. Flight shooters who
compete for maximum distance use
barrel shaped arrows, presumably for
the reasons given above.

Both the "slender column"
effect and the "buckling under own
weight" effect are simultaneously at
work. How the two are combined to
compute needed arrow strength is
quite beyond this mechanical
engineer, however. I hereby
challenge any interested engineer to
develope the structural analysis
needed to predict arrow failure.
Some points are obvious without
resorting to math. One point is
that the need for maximum strength
will occur somewhere between the
nock and the midpoint. Why? Well,
were a constant force carried, the
midpoint would need to be strongest.
That is intuitively obvious. In the
case of the arrow, since forces are
greatest on the nock side, need for
peak strength will be short of
midway. "Strength" refers to the
ability to resist bending, not
crushing, as the ability of a
section of shaft to resist simple
in=1ine crushing is massive and need
not be analyzed.

Page 9-2.



Sample Calculation of Structural Slender Column's  Ability to
Strength Accelerate Tip + Insert

This calculation will be divided Acceleration, max = Fmax/m

into two parts. The first part = 48#/(539 qr/7,000 gr/#)
will use the "slender column" = 484#/0.0770#

concept to evaluate the ability of
the arrow shaft to propel the arrow
tip, consisting of insert plus

broadhead., The answer sought will
be, "What fraction of the arrow's
strength is required just to
accelerate the tip and insert?"
The second part will ignore the tip
and use the "buckling under own
weight" concept. The answer sought
will be, "What fraction of the
arrow's strength is required just
to  support the arrow shaft's
weight?"

Arrow Data:

Tip (broadhead) = 155 gr
Shaft, 29" long, 2117, = 349 gr
Nock & fletching = 35 gqr
Total Weight = 539 gr
Diameter of shaft = 21/64"
Wall thickness = 0,017"
Aluminum's UTS = 88,000 psa
Aluminum's density = 1?4 18/ft

Elastic moduli = 10,5 x 10" psi
in tension & compression
Elastic moduli = 4,0 x 106 psi
in shear
Maximum acceleration force = 48 1b.

Py -3

623 g's
Weight of tip + 1insert during
maximum acceleration =

155 gr x 623-g's x 1#/7,000 ar
= 13.8 1b.

Critical load, t19 Bsert
= (Pi)€EI/L

= 10.5 x 108#/in?

= elastic modulus of aluminum

= 29" = 1enqth of shaft

= moment of nertla, hollow shaft

= (Pi/64)/(D"= ) where

= putside diameter and

= inside diameter.

=D-2t =21/64" - 2 x 0.017"

= 0.3281" - 0.0340"

= 0,2941"

0

i

aa o —r—

(3.1416/64)(0.3281% - 0.2941%)
0.04909 (0.01159 - 0.00748)
0.000202 in

*critical

o -

.04919 x 0.0041 =
t1cal tip_load = W
(Pi)2E1/L2 =

(3.14)2x10.5x1084#/in%x0.000202ind

Cr

(29 in)*

9.87 x 10.5 x 2.02 x 10% / 841
24.94#,

Percent of strength
(Toad/strength) x 100
13.8#/24,9¢# = 55%,

nwon



Buckling Under Own Weight

The weight of nock and fletching
can be ignored, mainly because they
are near the base where their
weight is most easily carried. The
weight of the tip has to be ignored
because the math to cover it is not

known. Rather, it was calculated
separately in the previous
paragraph. Thus, only the shafts

ability to carry its own weight is
being considered. The formula is:

B} § ..
Nepitica] = 7+88 EI/L? =
(7.84x10.5x106#/in2§0.0002181qf)
(28 in)
Wepitical™ 19.75#
Actual weight during 623-g

acceleration of shaft weighing 349
grains is:
W, = 349 gr x 623-q/(7000 qr/#)
= 31.1#.
Percent=of=strength

= W /w el oa
« 12Epua) gpitical
Conclusion: This arrow is in the

act of buckling under its own
weight when launch is initiated.

= 31.1#/19.75#
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Comparison of Cataloged
Recommendations with Calculated
Values:

Easton Aluminum does a fine
job of cataloging their arrow data
and recommendations. Just for the
fun of it, I've calculated the data
for their recommended use of 2117
hunting arrows. The arrow diameter
and wall thickness is the same in
all cases. The arrow lenaths,
weights, recommended bow peak draw
forces differ, 1I've assumed that
all bows are 80% efficient,
delivering a peak accelerating
force equal to 80% of peak draw
force. The recommendations  for

compound bows having 50% Tlet-offs
are used.

Data:

Broadheads weigh 125 grains &
inserts weiagh 30, for a total of

155 grains.

E 10,500,000#/1n2 for aluminum.
1= (pisa) x (% - a*)
0.0002018in%.

Critical tip weight = piZ EI/L2
20,914/L2,

== | 0 n

a's = (0.8 x peak force)

(grains/7000)
Critical weight for buckling
ignores broadhead, tip, nock and
fletching weights. Thus buckling

weight = total - 1256 - 30 - 35

grains.



Table 9-1 ... 2117 ARROWS' STRUCTURAL LOADS @ RECOMMENDED LENGTHS & BOW WEIGHTS

Accel-
length Arrow  Peak Slender Peak Tip % of Actual erated Critical % of
weight draw colum Acceler- Weight colum shaft shaft  shaft  buckling
force strength ation strength weight weight  strength strength
(in)  (ar)  (1bs) (1bs)  (G's)  (1bs) (%) (ar) (lbs) (b)) (%)
27 515 80.5 28.7 875 19.4 68 325  40.6 22.8 178
28 527 74.5 26.7 792 17.5 66 337 3&8.1 21,2 180
29 539 68.5 24.9 712 15.8 63 349 3.4 19.8 179
30 551 62.5 23.2 635 14,1 61 361  32.8 18.5 177
31 563 5.5 21.8 562 12.4 57 373 2.9 17.3 173
32 575 50.5 20.4 492 10.9 53 B 27.1 16.2 167
33 587 44,5 19.2 424 9.4 49 397 24,0 15,3 157
The above table indicates that the were shot by experts using pinch
arrow could be expected to huckle type releases, arrows of vastly
even if it had no tip. The different spine all fired straight
calculations say that a nearly ahead. Arrows which were much too
constant fraction of buckling flimsy simply collapsed.

strength is used at all recommended

selections, varying from 180% to
157%.

A better theoretician could
doubtlessly integrate the formulas

for strength requirements to avoid
buckling under own weight plus to
avoid buckling when carrying the

weight of the tip. The bigger
question, too, of how to predict
what conditions will actually

destroy the arrow would be the next
step. Finally, it would be very
nice to know which arrow should
shoot the most accurately and why.

An arrow selected according to
Easton's recommendations is in the
act of buckling when being fired.
The art of arrow selection seems to
be to match arrow to bow in such a
way that the arrow buckles neither
too much nor too little.

In the great little book, "Archery,
The Technical Side" it was reported
that arrows fired straight ahead
did not need to be matched to their
bows ! When the arrows were
restrained left/right & up/down so
as to center fire and when they
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Flight Shooters

Flight shooters who compete for
maximum distance use barrel shaped
arrows, presumably for the reasons
given above. The record for a
hand-held bow shot is over 1000
yards! The formula for the minimum
velocity needed to shoot an arrow
is: V = square root of (R x g).
Solving that for 1000 yards gives:
vV = (éUOO yds x 3 ft/yd x 32.2
ft/sec2)? = 311 ft/sec!

However, 1in "Saracen Archery" the
authors explain that Turkish flight
arrows were balanced to achieve an
angle-of-attack to the air which
resulted in a gliding effect. This
effect means that all bets are off
when compared to ballistic
trajectories. A glider aircraft
can obviously go much farther with
a given initial speed than could an
aircraft in a ballistic trajectory.
The same is true of arrows.



Af( , (e} bi /l.“"‘f

51?:140-’ cd/umﬁ" 4:14/35(5 aﬁa/:'es 7Lt9 arrow

Sha'H'S frofﬁf/""tj be’av’j 'Hf loacl‘sl svech as
hd!aw a/umfnu»q ﬁhaﬁs havin }'Icvfnj ;'ns‘er*'s
;: SHGP{_ is ;'3nar€C/.

and heavy Tips. Wefjbf' 5

BROADHERAD AN P

INSERT “WEIGH"

|G AT AA/M/

ACCELERAT —— IS#
0F 680-G. e 1

SHAPE NEEDEP
70 PROVIDE

For A HEAVY :

. — AN ALUMINU M TP IS THICK-
SHAFT 28" LONG st AT

x 2L p.p wiTH csvwﬂ)

et p
p.017" THIEK WALLS
CAN CARRY A
LOMND OF 3| #
wiTItovT BucKLJUG.

T <

THERGFORE,
LOAD - J_f-487
sRaveTH 3% a’_ '

_,—1'/‘
} L W E ' iy
Wcm‘ncm. - L’-
-

sLENDER
eol JHAN BARREL
SHAPE
Frgure 9-1 " "o, ENDER COLUMN =~ ILLUSTRATION
s —mmmemmem——— —_—

Pg. 1-6



AF(I \'(abl.}::}'i

An arrow WI:Hlod?" a '{qf bucj(les UnClér' u‘.f“'s
own “weight” if W2 7.84EL/L”.

cwith o i, o will buckle earlier),

[} = O# FoRcE
AT TIP !

/ |

j :
| |« 30% FURCE AT

$ MIDPOINT
\

~ (0% FORCE
‘\ AT MNoC
i FICT YT
/_%_{i_mw
KCCELERATING SHAPE TO _
- __:‘_152!57' ow N
WEIGCH T %
Fr 9-2 UCKLIN
Rl e 7 6 UNDER OwWhN WEIEGKT

Pg. 7-7



ARROW VIBRATION

Arrow spine

In my youth, I heard that
arrows must be selected to '"wrap
around" the bow. In those days of
long bows, it seemed logical. The
string would draw the arrow toward
the center of the bow, which was in
the way of the arrow. Thus the
arrow needed to somehow get around
the bow. It was explained to me
that if the arrow were too flexible
it would wrap too far around. If it
were too stiff, it would be
deflected by the bow handle,

I was away from archery for
about 30 years. During that time
they developed bows with handles
offset to get out of the arrow's
way. I was surprised, then, to hear
that the same old matching of the
arrow to the bow was still required.
Why? I could understand that the
arrow needed to be strong enough to
tolerate the bow's acceleration
forces. But I couldn't understand
why there was such a thing as "too
stiff" an arrow. It seemed to me
that since the arrow didn't need to
wrap around anything, the stiffest
arrow would be the best arrow.

Were the arrow shot exactly
straight ahead without any guidance,
which way would it go? The question
is similar to asking which way will
a broom handle tend to fall if you
try to balance it in the palm of
your hand. It could go most any
direction. Thus the need to quide
the arrow during launch is evident.
If the arrow were restrained from
going either left or right or up or
down, my initial feeling that the
stiffest arrow would be the best
would probably be correct. The only
direction which the arrow can be
guided is to the left. The bow is
in the way of the arrow's travel to
the right. So there is no direction
to send it other than to the Tleft.

This being the case, we are back to
the days of the long bow: The arrow
has to be pushed left & therefore
the stiffness of the arrow has got
to be matched to the bow,

A similar consideration applies
to the up-down guidance of the arrow
rest. When the arrow is
accelerating at about 300-g, The
downward pull of 1 g 1is truly
negligible. That must be why the
recommendation is that the arrow
nocking point be placed about 3/8"
above the arrow rest. This insures
that the arrow's tip will be
accelerated toward the arrow rest,
which 1is downward, during Tlaunch,
Why should downward be better than
upward? No important reason, except
that since the arrow must rest while
waiting to be launched, why not let
that same arrow rest be the vertical
restraint?

Back to the analogy of the
balanced broom handle: The
equivalent 1is that of holding the
broom handle almost but not quite
straight up, using the help of
corner walls to keep it from falling
in any direction.

An arrow's "spine" is a very
complicated thing. The author has
not found in the Tliterature an
engineering explanation of
satisfactory accuracy. The author
leaves to some interested
archer/engineer/mathematician the
challenge of describing
mathematically how an arrow behaves
during launch, It is a complicated
topic. The best writings on the
topic found by this author are found
in a book entitled "Archery: The
Technical Side" by Hickman, Nagler &
Klopsteq published 1in 1947 by The
North American Press, Milwaukee,
Wisconsin.  Tom Hughes of Ranging,
Incorporated of East Bloomfield, New
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York, told me about this great
little book. The librarian at the
West Valley Branch of the San Jose
Library did what I considered an
amazing job of locating the book in
the Putnam Library of Palomar
College, San Marcos, California.

One very interesting thing
reported in that book 1is that a
center-fired, fully restrained arrow
released from a pinch-type release
did indeed shoot straight ahead,
just like one would expect, Arrows
of various ‘"spine" all shot the
same! The same bows and arrows shot
with large errors when released with
tabs or bare fingers, however.

A couple of other interesting
items reported therein about the
dynamics of arrow launching: A
properly matched arrow is in firm
contact with the arrow rest during
the first few inches of travel;
thereafter, the arrow does not touch
the bow at all!

Arrow Vibration

Arrows in flight vibrate. The
points about which they vibrate are
called nodes. Nodes are located
roughly at quarter points.

Vibration During Launch

The arrow's initial vibration
has both nock and tip moving left.
Why left? The arrow must vibrate in
some direction because it is in the
act of buckling. The arrow rest,
being left of center, starts the tip
going left. The fingers give the
nock a bit of 1left motion when
releasing. Since the arrow is going
to buckle anyway, the direction is
initiated by the fingers and by the
arrow rest.

The speed of the arrow's
vibration depends upon the arrow's
natural frequency. The displacement
depends upon the strength, inertia

and acceleration.

Bow's Natural Frequency

I strongly suspect that the
natural frequency of the arrow's
vibration and the natural frequency
of bow need to have some logical
relationship to one another. By
"natural frequency" I refer, 1in the
case of an arrow, to the rate at
which a bent arrow vibrates when the
bending force is released. In the
case of the bow, "natural frequency"
strictly speaking refers to a "dry
fire" scenario. From the moment the
string is released until the moment
the arrow separates, the bow is
behaving 1like a vibrating object.
The differences are several. First,
of course, is that the bow only goes
through what amounts to 1/4th of a

full cycle of vibration.
Mathematically, this poses no
problem. Second, "dry fire" is not

the usual. Thus the bow's "natural”

frequency is perhaps the wrong
frequency to be analyzing. Perhaps
it should be the equivalent
frequency of the arrow=bow

combination. I Tleave that to the
mathematician who  tackles the
problem.

Analysis of the bow's
frequency, whether dry fired or when
firing an arrow, was covered in the
discussion of virtual mass elsewhere
in this book.

Arrow's Natural Freguency

Analysis of the arrow's natural
frequency is tougher. The several
mathematical approaches are:

1. Assume the arrow is a shaft
of uniform weight, strength and
cross section from nock to tip.
Assume (as is true) that vibration
will take place about two nodal
points.

2. Having computed the
vibration math for a uniform shaft,
complicate the math by assuming that
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equal weights are added to the tip
and to the nock end.

3. Having figured that out,
complicate it further by accounting
for the fact that the weight of the
tip 1is different than that of the
fletching and nock.

4. Take the next step, which
is to account for the fact that the
weight on the tip 1is not only
different from that on the nock but
it's distance from the center of the
shaft is also different.

5. Having figured out exactly
how and why an arrow vibrates,
compute the damping features of it's
fletching.

6. Having figured out all
about the vibration, deciue what
practical lessons can be learned.
In other words, "So what?",

Arrow Design

I suspect that a number of
possible 1lessons would be learned.
One might conclude that there is an
advantage to having equal weights on
tip and tail. Even more interesting
would be deciding that some other
weight distribution would be best.

In Tooking for answers to the
question of "So what?", you have to
keep in mind the objectives of
various archers,

Flight Shooters' Objectives:

Flight shooters want maximum
range. For them, the arrow's shape
should be (and 1is) barrel-shaped
with the maximum strength somewhat
aft of center so as to accept
maximum acceleration without
structural failure, Such an arrow
shape has it's center of gravity aft
of center. Once launched, the
flight shooter wants an arrow that
has the least possible friction.
Since fletching causes major
friction, the flight shooter is most
anxious to have minimum fletching.

An arrow with center of gravity
forward of center should need no
fletching. Yet the flight shooter's
arrow needs maximum strength aft of
center, Where is the best
compromise? Perhaps a spring-loaded
weight inside the arrow shaft would
be a huge help, with the weight far
aft during launch and springing full
forward immediately after Tlaunch.
Such an arrow would need no
fletching, could accelerate huge
weights with minimum shaft strength,
and could hide the feature entirely!
(Should 1 patent the idea?) In
"Saracen Archery" is described the
weighting of flight arrows so as to
not tip forward quite as fast as the
trajectory, resulting in a gliding
effect. The record for a hand-held
bow shot is over 1000 yards! The
formula for the minimum velocity
needed to shoot an arrow is:

V = (R x g)%
1000 yards gives:

& A\5
(Im‘stl x 3§2 "32'2;;9

Solving that for

v

311 ft/sec!

However, in "Saracen Archery" the
authors explain that Turkish flight
arrows were balanced to achieve an
angle-of-attack to the air which
resulted in a gliding effect. This
effect means that all bets are off
when compared to ballistic
trajectories. A glider aircraft can
obviously go much farther with a
given initial speed than could an
aircraft in a ballistic trajectory.
The same is true of arrows.

Target Shooters Objectives:

Target shooters want accuracy.
Each arrow should shoot exactly the
same as all others. Theoretically,
if each arrow were identical to the
others, spine would make no
difference. To some extend, with
today's aluminum arrows, it is a
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fact that too-stiff arrows will
shoot fairly accurately in spite of
not being well matched to the bow.
Arrows which are too stiff or not
stiff enough 1leave the bow going
somewhat sideways. It is then up to
the fletching to straighten them
out, It is presumably because the
fletching's interaction with the air
is less than identical in each case
that mis-matched arrows do not
"group" as well, Well matched
arrows will leave the bow traveling
straight. Thus the only work needed
of the fletching is to make them
continue going straight and to tip
them downward to match their
trajectory..

Two forces tend to make the
arrow not continue going straight.
One is gravity. Were an arrow shot
on the moon where there 1is no
atmosphere, it would arrive at the
target with the same up-aiming tilt
as it had at the moment of Taunch,
True, it would actually be traveling
downward (same as on earth) at the
moment of impact, but it would be
pointing upward, the same as it was
at the moment of launch. Here on
earth we need fletching to make the
arrow rotate so as to stay aligned
with the air stream as the arrow's
path changes from upward to
downward. On the moon, the arrows
would actually hit targets going
somewhat sideways, resulting in
damage to the arrows.

The other force tending to make
a straight-flying arrow turn is the
weather-cocking tendency. Were a
clean target arrow's center of
gravity forward of center, the
arrow's after body would act like a
weather cock, tending to keep the
arrow flying straight. Such an
arrow would need minimum fletching.
If the center of gravity were aft,
however, the arrow's tendency would
be to turn around and fly backwards.

Bowhunters' Objectives:

Bowhunters want accuracy (same

as target shooters) but also want
speed and energy. They need speed
to minimize the consequences of
errors in estimated range. They
need energy for good arrow
penetration. Broadheads act 1like
fletching at the wrong end of the
arrow, Broadheads try to turn the
arrow around, To offset the
broadhead's forces, hunting arrows
need more fletching than other

arrows. The broadhead's weight
changes the arrow's natural
frequency. On the plus side, the

broadhead's weight tends to put the
arrow's center of gravity forward,
thus stabilizing it's flight.
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Chapter 11 ... ACCURACY CONSIDERATIONS

Range Estimation Error Consequences

A bowhunter's ability to
accurately estimate range is as
important or, 1in some cases, more
important than his ability to launch
an arrow accurately, Think about it
for a moment. A hunter capable of
putting an arrow within a few inches
of the intended point at fifty yards
will miss by a wide margin if the
target s actually 40 or 60 yards
away. How far will he miss by? It
depends upon three factors: the
range, the arrow's velocity, and
whether he estimates long or short.

Miss distance due to range estimate
error:

archer who has pin
sights, it 1is a simple matter to
ascertain how far the miss will be
by simply looking at his pins. For
instance, say the target is actually
50 yards away. Stand 50 yards from
a target. Put 40-yard pin on
target. With 40-yard pin on target,
look at where the 50-yard pin in
pointed, because that is where the
arrow will hit if you Tlaunch!
Repeat at any distances of interest.
See fiqure [Il-I.

For an

Mathematically, error at
closest-point-of-approach is equal
to the mistake in range multiplied
by the sine of the arrow's launch
elevation, Which launch elevation
to use depends upon whether mistake
is short or long. The formulas are:

sine A

R=1
where ang

239911 i

miss distance when

es%?mated range is longer than actual.

Er = error in range estimate
AR=10 g Angle of launch to hit
targe? at estimated range.

P'Iow
where

Eqn #11-2,

miss distance when
es%1mated range is shorter than

actual.
ER = error in range estimate
AR-R = Angle of launch to hit

target at actual range.

A 10% farther range estimation error
will result in a greater miss than
will a 10% shorter range estimaticn,
On average, then, a hunter is more
apt to shoot high than he 1is to
shoot low. The difference, however,
is reasonably small and thus it is
convenient and reasonably accurate
to use Equation #11-2 for both high

and Tlow calculations. Table 11-1
illustrates the influence of range
estimation errors with three

different bows and at ranges from 10
to 90 yards.

The data, when plotted, shows
that the amount by which an arrow
will miss for a given percent error
in estimation of range is a square
function of the range. Doubling the
range will quadruple the miss. It
also shows the benefit of high speed
arrows, For instance, assuming an
error 1in range estimation of 10% of
whatever the range is, and assuming
that a 12" error can be tolerated,
the following is true:

A 42# bow, 140 fps arrow, can
be shot at 37 yards.

A 58# bow, 160 fps arrow, can
be shot at 42 yards.

An 84# bow, 240 fps arrow, can
be shot at 63 yards.

Plotting that data shows that the
distance from which an arrow can be
shot for a given acceptable error is
linear with speed. Doubling arrow

Page 11-1,
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speed allows shooting from twice the
distance! This conclusion ignores
launch errors and wind errors. It
simply addresses the hit error
caused by mis-estimating range.

Table 11-1 is a compilation of
arrow trajectory data computed on
the assumption that no air friction
existed. These assumptions and data
would be correct if astronauts were
to shoot arrows on the moon, with
two exceptions: First, the strength
of gragity, which on earth is 32,2
ft/sec® would be much less on the
moon. Second, on the moon, an arrow
would hit the target aimed upward at
the same upward elevation it had at
launch because the fletching would
be useless, having no air with which
to steer.

Although the data is based on
zero air friction, the computed
"miss" distance for a 10% error in
the estimated range will be almost
exactly correct. The 180 fps is
about what to expect from a 56#
compound hunting bow. The 160 fps
is about what to expect from a 44#
compound hunting bow. Note that at
180 fps when shooting at a target
actually 40 yards away but guessed
to be either 44 or 36 yards away
(due to a 10%-of-range error), the
miss distance is 0.72 feet and that
at 160 fps it is 0,91 feet, Thus
the faster arrow puts hits 0.91 -
0.72 = 0.19 feet = 2.3" closer.

Influence of arrow velocity:

Pins are close together on a
fast bow and far apart on a slow
bow. Thus, obviously, the miss due
to an error in range is less with a
fast arrow than with a slow one.
The ability of speed to compensate
for errors in range is very
significant, which 1is one of two
reasons why bowhunters Tike to shoot
the fastest bow they can handle.
The other reason, of course, is that
a fast arrow penetrates better.

Influence of range:

Elsewhere in this book the
author explained why he recommends
that a 10-yard pin be set. It is
the highest pin ever needed. It is
also the pin which is used without
correction over the longest span of
ranges. Typically, the 10-yard pin
is used over a range of from about 8
yards to about 14 yards or so,
without correction. Why? It has to
do with the geometry of the archer's
eye being above the arrow by an
amount which is significant at short
range but is not significant beyond
about 20 yards. The result is that
pins start very low (at the arrow's
tip, 1in fact) for zero range and
rise rapidly as range is increased
out to about 8 yards. Then, from
about 8 to 14 yards, the pin stays
at a nearly constant height., As the
range is increased, the pins start
to drop again, arriving finally back
at the arrow tip.

Thus, 1if the actual range is
somewhere near 10 yards, a major
mistake in estimate of range causes
very little error. A 20% error in
estimated range would mean that the
archer estimated 8 or 12 yards when
it was actually 10 yards. No
significant miss would result,

If the actual range is 50 yards
and the archer miss-estimates by
20%, he would use his 40-yard or 60-
yard pin. A total miss would result
unless the target were quite large
or the arrow extremely fast.

Estimating range:

The use of a range finder is
the best way to ascertain range.
The author nailed a jack rabbit at
73 yards last year, using a range-
finder. The author's average error
in estimating range is about 10%. A
10% error at 73 yards would have
resulted in a total miss.
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A range finder is almost
mandatory for practicing range
estimation. Make it a habit to walk
around the block a few times a week,
taking the range finder. At
intervals, stop and estimate the
range to something. Then take the
range with the range finder. Then
"memorize" that the actual range of
whatever you are 1looking at is
whatever the vrange finder says.

Make a vregular game of it, by
writing down the ‘"quess" and
"actual" ranges. This procedure

would make excellent and meaningful
competition with other archers.

The 1local football field s
perfect for calibration of a2 range
finder. It 1is already marked at
intervals. Practice 1in the use of
the range finder at the football
field gives confidence in the
accuracy of the device. The use of
a range finder does involve some
proficiency. It also requires good
eye=-sight. The author, whose vision
is about 20/40, must be wearing
glasses in order to get good
accuracy. Also, lighting must be at
least fair.

While calibrating the range
finder at a football field, stand on
the sideline. Note that the

sideline Tlooks 1ike two crossing
lines, with the point at which they
cross being the range at which the
finder 1is set. Doing this gives a
better understanding of the
precision (or lack of it) of the
device. See Friguve I[-3

Another way to stay in practice
at range estimation is to leave the
range finder accessible in your car.
When waiting at stop signs, use it.
In order to not be caught napping
when the light turns green, take the
range first and then guess the
range. Be *careful about trying to
take a range through the curved
glass of a car's wrap-around front
window. The results can be wrong,
as light is bent differently
depending upon which part of the

window each eyepiece looks through,

Left-right effects of (known) range:

Left-right accuracy is a lineal

function of range. Double  the
range, double the error, If an
arrow is shot exactly at the

target, it will hit a vertical 1line
through the target regardless of
range and regardless of arrow speed.

Left-right effects of wind:

When an arrow is launched, it

immediately lines wup with the
airstream, thereby automatically
"compensating" for crosswind., The

path of a friction-free arrow will
not be changed by a crosswind. The
phrase "friction-free" as used here
assumes no fore-and-aft resistance
but assumes that fletching  has
enough side-ways resistance to steer
the arrow.

Real arrows have lots of
friction. Typical accelerations
caused by friction of real arrows
are in the neighborhood of 1.0-g's.
That 1is, an insect riding inside a
typical arrow will experience a
deceleration force of about 1.0 x
gravity, with "down" being the arrow
tip and "up" seeming to be the arrow
nock.

To calculate the cross=-wind
effect of friction is not easy. In
fact, it is so tough that I'm not
going to try it. None-the=less,
certain maximum influences can be
stated, just to put a boundary on
the answers. Look at it this way:
When the arrow has lined up with the
relative wind immediately after
being launched, the rear-ward
acceleration (as viewed by an

observer riding the arrow) can be
divided by vector analysis into
components. The sideways component

of acceleration is what causes wind
error, The acceleration drops off
until sideways speed equals cross-
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wind speed. Thus the maximum and
thus Timiting wind error would that
the same as though the arrow rode
the wind sideways at full cross=-wind
speed for the entire flight. A 200
fps arrow shot 300 feet has a flight
time of about 1.5 seconds. A 20 mph
cross wind is a 29.3 fps wind; and
in 1.5 seconds it will cover 44.0
feet. Real arrows would have much
less error than this, however.

An approximation of wind error
can be made by assuming that initial
acceleration prevails for the entire
flight. Use the formula:

Offset = 1/2 x a X t2
Example:
Assumptions:
Arrow = 2117 x 28 with 5" 3-fletch
Weight = 527 grains.
Launch velocity = 200 fps.

Drag at 200 fps = 386 grains.
Cross wind = 20 mph = 29.3 fps.

Calculations:
Initial deceleration = 386/526
= 0.73 g's
x 32.2ft/sec®/q = 23.6ft/sec?

Sideways fraction = 29,3fps/200fps
= 0.15
Sideways acceleration =
0.15 x 23.6ft/sec’ = 3.46 ft/sec®
Duration = 300 ft/200ft/sec
1.5 seconds
x 3.46ft/sec? (1.5sec)?

Offset D
ng ft.

This answer is probably not too far
wrong. The true answer will be less
because the assumption of continuous
crosswise acceleration is not
correct. Cross=wise acceleration
will diminish throughout the flight
as the arrow slows down,

My "Pro Range Finder 80/2" Tlists
errors as follows:

20 mph:
100 yards = 68",
50 yards = 16",
20 yards = 2",
10 mph:
100 yards = 34",
50 yards = 8",
20 yards = 1",

I know not what assumptions they
made , or if their numbers are
measured results. The example
calculation ceme up with 3,89 feet,
or 47", for 20 mph @ 100 yards.
This is in the same ballpark as the
68" 1listed above, so I can accept
their figures.

Concluding comments about
cross-wind effects are:

1) Streamlined arrows are less
effected than those having heavy
drag.

2) Fast arrows are less
effected than slow arrows.

Vertical errors due to known range:

"Known" range is a measured
range, known to the archer. The
archer is assumed to have sighted in
his bow for that range. Errors due
to known range are 1lineal with
range. Doubling the range will
double the error caused by a aiven

mistake in lTaunching. Arrow
velocity makes (almost) no
difference. The only technical

reason that a fast arrow might have
less error would be that it's total
length of flight is slightly less
than that of a slower arrow,
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Accuracy as influenced by errors in

range estimation

If an archer can keep 9 out of
10 arrows in a 4" circle from 30
yards, what will his group Tlook
like when he has to estimate the
range? It depends, obviously, upon
how accurately he estimates the
range. Or at least- the up-down
grouping does. The Tleft-right
accuracy is independent of
estimation errors.

/\
“ _//

GROUP_SHOT FROM KNOW DISTANCE

GROUP_SHOT FROM ESTIMATED DISTANCE

An archer will never shoot a
vertically dispersed group like the
one illustrated because, after the
first shot, he will know the actual
range rather accurately. A
vertical group might very well be
shot by a succession of different
archers each of whom comes within
sight of the target, estimates its
range, and shoots one shot.

The effect of mis-estimating
range can be ascertained very
simply by noting where each pin
sight points on a target. Say, for
instance, that estimated range is
40 yards, actual is 30 yards. The
40 yard pin will be on target; the
30 yard pin will be on impact
point.

,//”::::5&————*"~30 yd pin

40 yd pin

SIGHT PICTURE

The various groups may look as

follows:
&

L

GOOD SHOT, GOOD SHOT,
GOOD POOR
ESTIMATOR ESTIMATOR

/ % |
N

POOR SHOT, POOR SHOT,
GREAT RANGE POOR RANGE
ESTIMATOR ESTIMATOR

A pertinent point to notice is
that a poor shooter who is a great
range estimator may very well out-
shoot a good shooter who is a poor
range estimator. For methods of
calculating exactly what the above
groups should look like, see Chapter
16, "Accuracy Statistics".
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VELOCITY DETERMINATION

Archery on the moon:

On the moon there is no air and
thus no air friction. Were there no
air friction on earth, the following
formulas would apply exactly. They
could be arranged to ascertain
initial arrow velocity. "Initial"
velocity means what it says, but on
the moon initial and final
velocities would be the same for a
target at the same elevation as the
launch point. On the moon, the
arrow's speed at the top of it's
trajectory will be slower than it's

initial velocity. Shooting
downhill, speed will increase
continuously. On an earth with air,
friction will cause final velocity

to be slower than initial speed when
target and launch point are at same
elevation. Shooting downhill with
air friction, velocity might
increase or decrease, depending upon
initial speed, friction, and arrow
weight. The moon-applicable
formulas are:

t = 2V/g = round-trip time of a
vertical shot.

R'max = VZ/g = maximum range of
arrow shot at 45°,

A = % arcsin(RG/V?)
horizontal of shot.

angle above

h = (vZ/2g)sinA
zenith,

height of

Vertical shots:

The first formula give the time of
flight of an arrow shot straight up.
By using a stop watch to measure
elapsed time from time of launch to
return to surface, velocity can be
computed. Solving the formula for
velocity yields:

V = tg/2

Example: Elapsed time = 10.00
seconds.
v 10 sec x 32.2 ft/sec2 / 2

non

161 ft/sec.

Note the I've used earth's value of
gravity, which is 32.2 ft/sec®. The
moon's value of gravity is smaller
because the moon weighs less than
the earth,

I've not been able to compute the
corresponding formula for arrows
shot straight up in air. It is not
even clear to me if, for the same
initial speed, the elapsed time
should be longer or shorter. The
time to go up to the top will be
shorter in air due to the slowing of
the air, which will stop the arrow
earlier. But the time to return to
earth will be lengthened in air due
to the parachute effect.

Maximum range:

The second formula tells how far an
arrow will travel on the moon when
fired 45° above the horizon.
Solving for V yields:

V = (gﬂ');i = speed of arrow shot 45°
from horizon.

Example: Range = 400 yards.’
) b oz2255)%
V -(%5483 ‘32- M
= (38,640ft%/sec?)
V = 197 ft/sec.

With air friction, an arrow will
obviously not fly as far, In "The
Technical Side of Archery" it is
shown that an elevation of 42° above
the horizon yields maximum range in
air with real arrows.

The formula does tell you that the
arrow's Tlaunch speed was faster than
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the computed value. It does not say

how much faster.
Zenith
The Tlast two formulas can be

used to compute what the arrow's
zenith would be in an air-free

environment. By firing first at the
full range and then at half the
range, the zenith height can be
measured.

Example:

Use the 80-yard pin at 80 yards.

Use the 80-yard pin at 40 yards
which is half way.

Measure the difference in arrow
group heights. This would be the
zenith height for an 80-yard shot in
an air-free environment.

Construct a table of zenith
versus velocity using formulas:

First point: = 80 yards. V = 200

fps.
A = % arcsm(RG/V2 = angle
above hor1zonta1 f s L.
= L arcsin( 8 x3z£t)
6200 /ﬁcc)‘
= L arcs1n(0 1932) = % x 11.14°
= 5,R7° = Ench angle.
h = (V&/2g)sin“A = height of
zenith, 2
QOO&Z"O < 35..570
- ;gaa,&ﬂ-/sec"‘ Y

40,000 ft/64.4 x (0.9706)2
621 ft x 0.00942

5.85 ft = zenith height of
80-yard shot.

Additional points can be calculated,
and the velocity corresponding from
any given zenith height can be
interpolated. See table. Table
lists, also, the values for 40 yards
and 20 yards.

In the real world of archery with
air friction, the zenith will have
to be just a little higher in order

for an arrow of 200 fps to reach 80
yards. Thus the actual velocity is
slower than the computed.

When the three methods of computing
velocity without friction given so
far are used uncorrected in air, one
(the vertical shot) gives
indeterminate results, another (the
maximum range shot) proves that the

arrow was launched at least as fast
as computed, and the third (the
zenith-height measurement) also
proves that the arrow was launched
at least as fast as computed.

Pin Gap

As all archers who use pin sights

know, pins of fast arrows are close
together and pins of slow arrows are
far apart. The space between pins
defines an angle. If a peep sight
embedded in the bow string is used,
the angle is from one pin to the
peep sight and back to the next pin.
Otherwise, the angle is from one pin
to the eye and back to the next pin.
The angle from the horizontal which
an arrow must be fired in a

frictionless environment is given
by:

= % arcsin (Rg/Vz)
By calculating that angle for each

pin and then taking the difference
between angles, the angle between
pins can be calculated. The sine of
the angle between pins multiplied by
the distance from the peep sight to
the plane of the pins is the
distance between pins.

Arrow speed is 200 fps.
High pin is for 40 yards.
Next pin is for 60 yards.
Peep~to-pins is 28.75".

Example:

_§ Gow3ft x32.0fT/sec

’60 MM

(;hmdf*??::)‘“
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A’EO = % arcsin (180x32.2/40,000) TABLE OF VELOCITY PARAMETERS
L arcsin 0.1449 = % x 8,3315°

nn

4,166° V R,max 40/20 80/40 Time 30/40 gap
0&3“:3?.2#-‘ (fps) (yds) (in) T(ft) T(sec) (inches)

A, =J— M[ﬁ——w——#
40 ~Z (200152 c)2 100 104 72.4 6.21  1.498

110 125 59.0 21.67 6.83 1.196

=% arcsin (120x32.2/40,000) 120 149 49.2 17.46 7.45 .982

= % arcsin 0,0966 = % x 5,5434° 130 175 41.7 14,52 8.07 .823

= 2.712° 140 203 35.8 12.33 8.70 .700

Asgo = Asrgg = 4.186° - 2.772° 150 233 31.1 10.63 9.32 .603

= 1.§B4° 160 265 27.3 9.27 9.94 .525

sine of 1,394° = 0,02433 170 299 24,2 8.17 10,56 .461
Distance between pins = 28.75" «x 1800 335 21,6 7.26 11,18 .408
0.02433 = 0.70". 190 374 19.3 6.50 11.80 .363
200 414 17.4 5.85 12.42 .324

By repeating such calculations, 210 457 15.8 5.30 13.04 .292
arrow velocity for any given pin 220 501 14.4 4.82 13.66 .263
spread can be tabulated. Se= table 230 548 13.2 4.41 14.29 .239
for the tabulated spread between 30- 240 596 12.1 4.04 14,91 o217
yard and 40-yard pins. 250 647 11.1 3.72 15.53 .198

260 700 10.3 3.44 16.15 .181
This technique is correct in a

friction-free environment only when To ascertain arrow velocity:

the parallax caused by the eye's

being above the arrow is negligible. 1 Shoot an arrow as far as
The parallax is very significant out possible. Measure range. Enter
to 20 yards and somewhat significant "R,max" column; read velocity in
between 20 and 30 yards. Thus this left column. Actual Taunch speed is
procedure should not be used unless faster.

parallax 1is also computed under 30 2. Shoot straight up (75° to 90°).
yards. Clock arrow's time of flight. Find

time in  "Time" column. Read
velocity in Tleft column. Actual
launch speed is indeterminate.

3. Sight in bow at 40 yards. Shoot
at 20 yards. Measure how high above
target arrows hit. Enter "40/20"
column, Read velocity in left
column, Actual Taunch speed is
faster,

4, If velocity per "40/20" method
is greater than 200 fps, use "80/40"
column by sighting in at 80 yards
and then shooting at 40 yards.
Actual Taunch speed is faster.

5. Measure distance between your 30
yard pin and your 40 yard pin. Find
that difference in "30/40 gap"
column, Read velocity in left
column,
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Notes:

A1l numbers ignore air friction.
A11 except "30/40 gap" column are
true for any bow, any arrow.

“30/40 gap" column assumes distance
from peep sight to plane of sighting
pins is 28.75". To compensate for
your bow, multiply your gap by
length applicable to your bow and
divide by 28.75", If you do not use
a peep, use distance from eye to
plane-of=-pins.
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Chapter 13 ... Penetration

The penetration of an arrow into the body of an animal is a topic of
much interest to bowhunters. First, let's make some obvious statements,
such as:

0 A sharp arrow penetrates better than the same arrow when dull,

o A heavy arrow penetrates deeper than a light one of the same
diameter if both arrive at the same velocity.

0 An arrow traveling fast penetrates deeper than the same arrow
traveling more slowly.

A somewhat less obvious statement is:
0 A straight-flying arrow penetrates better than one not flying

straight.

Archer's Decisions

Of the four parameters mentioned (sharpness, weight, speed, straight
flight), the archer has some obvious control, such as:

0 He can sharpen his broadheads.

0 He can get better speed and/or weight by shooting his bow at
heavier poundage.

0 He can get straighter flight by tuning his bow.

Assuming he has done the above, the question remains as to the trade-
offs of different arrows shot from the same bow. In particular, the
“overdraw" conversion decision. An "overdraw" is an arrow rest located 3
or 4 inches aft of the conventional arrow rest. With the arrow rest aft, a
shorter arrow can be shot. In Chapter 9 the ability of an arrow to
tolerate launching forces is shown to be inversely proportional to the
square of the arrow's length. Thus a 26" arrow can tolerate a ratio of
forces equal to (29/26) squared or 1,244 or 24,4% more. But since the same
bow is being used with or without "overdraw", the arrow has no need to
tolerate more force. Thus the arrow's wall thickness may be reduced. The
shorter arrow is then lighter in weight not only because it is shorter, but
mainly because it's wall can be thinner, The before-and-after data for the
author's Martin Tiger bow was:
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Table 13-1.

Comparative Data for Overdraw Conversion

Bow is a Martin Tiger compound of peak draw of 69 pounds.

Conventional Over-draw
Arrow name 2117 2114
Diameter 21/64" 21/64"
Wall thickness 0.017" 0.014"
Length 29" 26"
Weight = m/g = 545 grains 460 grains
Velocity = V = 193 ft/sec 205 ft/sec
Momentum = my = 15.0 ft-1b/sec 13.5 ft-1b/sec
Energy = &mve = 45.0 ft-1b 42.9 ft-1b

Practical conclusion: A heavier arrow will penetrate deeper than a light
arrow when shot from the same bow. This will remain true regardless of
whether penetration is prcportional to momentum or to energy.

Thus the hunter is right back where he started: speed is helpful in
offsetting range estimation errors; weight is helpful for penetration and
smooth shooting. The tradeoff depends upon the game sought. For deer, I
will stay with the high speed of the overdraw. For anything bigger, I'11
use the heavier arrow and simply shoot from a shorter range. How much
shorter? See the chapter on accuracy.

Momentum versus Energy:

One should first get the answer to the question, "Which is penetration
proportional to; arrow energy or arrow momentum?" The literature is
divided on the question. Burton G. Schuster in "Ballistics of the Modern
Working Recurve Bow and Arrow", American Journal of Physics, April 1969
says that penetration is proportional to momentum. His assumption,
however, is that "the force on the arrow head is proportional to the
velocity, and that the drag on the shaft is proportional... to the depth
that the shaft has penetrated." He goes on to say, based on those
assumg ions, that "For a given bow, the penetration is then proportional to
(2MV)2." In the chapter on air drag, it was shown that air drag depended
upon velocity raised to the 1,5th to the 2.0th power. How Schuster
concluded that flesh drag depended upon velocity raised to the 1/2 power is
unknown. Maybe he is right; maybe not.

Every scenario presented later in this chapter leads to the conclusion
that penetration is a function of foot-pounds of energy, not of momentum,
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Categories of Resistance and Resulting Decelerations:

An arrow is slowed by tip resistance and by wall drag. The categories
of tip resistance and wall drag vary. The categories are:

Tip Resistances:

a) Cutting work.

b) Sliding friction.

c¢) Impact.

d) Displacement work.

e) Increases of above caused by untrue
flight.

Wall Drag:

a) Constant drag associated with unchanging wall contact
area, such as when shooting through a thin target.

b) Increasing drag when drag area increases with depth of
penetrztion, such as when shooting into a bale of hay.

c) Increases of above caused by untrue flight,

Analysis:

What I'd 1ike to do in the following paragraphs is to analyze each of
the above forms of resistance separately. The reader should keep in mind
that a real arrow responds to all of them at the same time. How close the
assumed scenario applies to the archer's arrow depends upon how close the
assumptions fit the facts.

Tip Cutting Resistance:

What I'm about to describe is my own theory, based mainly upon what
seems logical to me.

When a broadhead presses against a material, the material "gives" in a
stretching manner until it breaks. The amount of material involved depends
upon sharpness. A sharp blade stretches only the nearest part of the
material. A dull blade touches more material and therefore causes more
material to be stretched.

The energy consumed in the cutting process depends upon the amount of
stretching done before rupture occurs. None of the energy is recoverable.
When the material ruptures, it is comparable to a dry fire caused by a
broken bow string. Put another way, there is absolutely no tendency for
the arrow to bounce. Energy has been used to stretch the material, and all
that energy is lost when the material ruptures.

Tip Sliding Friction:

The friction on the sides of a broadhead tip will be computed in the
same manner as will the friction of the walls of the arrow shaft, described
later in this chapter.

Page 13-3.



Tip Imgact:

The energy imparted by the tip of an arrow to whatever it is hitting
and penetrating can vary all over the map. If you shoot an arrow into a
pile of rocks, some rocks will fly off in various directions, carrying off
kinetic energy. The result as far as the arrow is concerned can vary 2
great deal. The arrow may do anything between bouncing back to continuing
forward. So many variables influence the energy exchange that trying to
nail them all down is futile. A few interesting scenarios can be

mentioned, however,
a) The Bounce

An arrow with blunt tip shot at a heavy steel plate could bounce.
(It's more apt to shatter, but that's a different scenario.) How far it
will bounce varies, but the theoretical maximum is one where bounce speed
is almost equal to impact speed. Under this scenario, penetration is less
than zero and energy is not dissipated.

b) The Merge

If you shoot a small bird and the arrow stays the the bird, you have a
"merge" situation. The law of conservation of momentum can be used to
compute the resulting speed of the arrow/bird combination. The lTaw says
that the arrow's initial momentum will equal the momentum of the arrow/bird
combination. Mathematically, the conservation of momentum law says that
the weight of the arrow multiplied by it's initial velocity will equal the
weight of the combination of arrow and bird multiplied by their common
resulting velocity.

WAVA = (HA - HB) X VH+B where
W = weight. V = velocity. A = arrow. B = bird.

Assume the bird weighs 1,200 grains and the arrow weighs 500 grains and is
going 200 ft/sec. What will the resulting speed be after impact? How much
kinetic energy will the arrow/bird combination have?

600 gr x 200 fps = (600 gr + 1200 gr) x Vasp
Vasg = (600gr/1800gr) x 200 fps = 67 fps.
Einitial = WaVA%:

Erinat = (o * ¥g) X Vas’

Ecinal/Einitia] = (1800gr/600gr) x 672/2002 = 3 x (1/3)% = 1/3.

This shows that the kinetic energy remaining is 1/3 of the initial kinetic
energy. 1/9th is in the arrow; 2/9ths is in the bird, and 6/9ths has been
dissipated into the form of heat.
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Displacement Work Done by Tip:

Were an arrow to be shot at a spring which was free to compress but
not to spring outward again, the spring would be compressed by the incoming
arrow. No (major) energy would be lost. No significant friction would be
involved. Yet the arrow's "penetration" would be a definite number. When
shooting arrows into "springy" material, such as Ethafoam, some of the
arrow's energy is transferred to the material in the form of stored
mechanical energy. Pulling the arrow out of the Ethafoam is comparable to
letting the spring decompress.

The amount of energy stored in the spring which is hit straight on is
exactly comparable to the amount of energy stored in a longbow. In fact,
were the spring sized correctly, the "curve" of the spring being compressed
by the incoming arrow would be an exact mirror of the bow's force=-draw
curve, assuming both the bow and the spring were 100% efficient.

The amount of energy stored in the Ethafoam is not the same, because
the "springs" load at right angles to the arrow's flight. Thus the
mechanical energy stored in the Ethafoam is proportional to the depth of
penetration. In this paragraph I'm ignoring the frictional energy
dissipated in the Etharoam in the form of heat. The amount of energy
stored is also very dependent upon the arrow's diameter. The amount of
energy stored in 2 spring varies with the square of the amount of
compression.

Tip Resistance due to Untrue Flight

A number of bowhunters whose opinions I respect assure me that a
straight=flying broadhead penetrates better than one which is fishtailing
or porpoising. A friend and very experienced bowhunter, Rick Berg of
Bowhunters Unlimited of San Jose, guarantees me that his arrows penetrate
best when the range is about twenty yards. At that distance, his arrows
have steadied up but not slowed significantly. Dan Quillian of Archery
Traditions, when told this opinion, agreed 100%. Dave Holt, author of
"Balanced Bowhunting" says the same thing.

Why should that be? I presume it is rather obvious, when you give it
some thought, that the tip of a broadhead which has a sideways component to
it shouldn't cut as well as one going straight. It would be like cutting a
piece of meat while holding the knife blade a 1ittle sideways.

Constant Drag on Walls

Once an arrow has hit something, jt's deceleration is tremendous.
Make the assumption than an arrow traveling 200 fps stops in a distance of
two feet. Assume, further, that the decelerating force is constant, as
when shooting through a thin target. See Figure 13-1. Then ask the
question: How many g's does that take? The basic formula is:
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deceleration
length to stop (2 feet)
velocity, original (200 feet/second)

2al E Vz. where

- o
nnn

Solving for a yields:
s = v2/2L = (200 ft/sec)?/(2x2 ft) = 10,000 ft/sec

Dividing a by the force of gravity, which is 2.4 ft/sec2 yields the number
of "g" forces:

g's = a/g = 10,000/32.2 = 311 g's. That's a big number!

The actual force working to slow the arrow depends upon the arrow's weight
and is given by the formula: F = ma (force = mass times acceleration).
Let's assume an arrow weighs 550 grains.

F = (550gr/7000gr/#) x 10,000 ft/sec / 32.2 ft/sec? = 24.4%.

That seems like & reasonable number. The force acts for about the
same distance as does the bow string while firing. Unlike the bow string,
the force is constant until the arrow stops. Thus the 22.2 pound constant
force is about the same as a 44.4 pound peak force in a long bow, because
the long bow goes from peak to zero over a 24" stroke, averaging 22.2
pounds. Depending upon the bow's virtual mass, the bow's draw weight would
be in the range of 60#.

Interestingly, I tried pulling a few arrows out of my ethafoam target,
measuring the pull on a 100# spring scale. The break-away forces were in
the neighborhood of 25 pounds, but the steady pull (sliding) forces
happened too quickly to get a measurement. The coefficients of static
friction are higher than those of sliding friction.

The next question is, how does the 24.4 pounds of resistance get applied to
the arrow? The real answer is quite complicated unless you make some
simplifying assumptions. Let's assume that the arrow has penetrated a 2"
thick broadhead ethafoam target. The friction thereafter is entirely wall
friction. The tip is in free air and not, therefore, meeting any
resistance. The basic formula for sliding friction is:

F = KAp = coefficient of sliding friction x area x pressure.

To ascertain the coefficient of sliding friction between the ethafoam and
the arrow wall could be done rather easily. I've not done it, however, SO
1'11 have to guess. My guess is that the coefficient is about 1.0. We
know the force. We know the area. The pressure exerted by the ethafoam
can, therefore, be computed, as follows:

A=pixDx2"=3.1416 x (21/64)" x 2" = 2.06 sq.in.
F = 24,4 pounds.
p = F/KA = 24.6#/(1.0 x 2.06in2) = 11.8 #/in?,

This 11.8 psi is a reasonable number.
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This constant deceleration analysis is probably close to correct for an
arrow penetrating an ethafoam target, where most of the resistance is wall
drag over a small length, The same analysis would apply, perhaps, to an
arrow penetrating into an animal's body cavity via thick hide. The soft
membranes within the body cavity provide very little resistance, whereas
the thick hide keeps exerting drag over a small length of the arrow's wall.
Incidentally, this might be an excellent argument for using a three-or-more
bladed broadhead rather than a two-blade broadhead. It would seem to me
that a hide penetrated by a 3-blade head would not be able to apply strong
wall pressure, whereas one opened by a 2-blade would.

The depth of penetration where deceleration is caused by a constant
wall force is directly proportional to an arrow's energy, not it's
momentum. This can be proven by noting that work is equal to force times
distance. (Work and energy are the same thing.) Solving for distance
(penetration), we get:

depth of penetration (distance)
energy of arrow
force (constant)

d = E/F, where d
E

F

ETHAFOAM TARGET
2 CONTACT AREA = PI D t = 2.06 sq. in.
J:/,--—-.‘5.’1/6-4"
< | — 15

g
CONTACT PRESSURE = 11.8 PSI

COEFFICIENT OF SLIDING FRICTION
BETWEEN ARROW & ETHAFOAM = 1.0

ARROW TIP IN FREE AIR SEES
NEGLIGIBLE RESISTANCE.

Fiqure 13=1 ... CONSTANT WALL FRICTION
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Increasing Drag on Walls with Depth of Penetration

An arrow shot into a bale of hay presumable encounters increasing
resistance as it goes deeper. If the resistance met by the head could be
ignored, and if the wall resistance were equal for every square inch of
wall area, then the resistance would increase linearly with each inch of
arrow penetration. The forces involved would be very much the opposite of
the forces applied by a longbow during launch. In fact, were the dept of
penetration equal to the stroke of the bow, the slowing forces would be the
exact mirror of the launching forces.

The depth of penetration would, again, be proportional to the arrow's
energy, not it's momentum.

Wall Drag Change Due to Untrue Flight

The circumstance under which I have noticed that an arrow not flying
straight fails to penetrate as far is when tuning my bow with unfletched
arrows. I1've even bent arrows by shooting them into a bale of straw
without fletching. It should be intuitively obvious that an arrow having a
sideways component of velocity will experience greater resistance than one
flying straight.

Statements:

In each of the scenarios mathematically analyzed in this chapter,
penetration was shown to be proportional to arrow energy. In no scenario
was it proportional to momentum. Thus I will side with those authors who

say penetration depends upon energy. That being the case, the following
statements can be made:

"penetration is directly proportional to arrow weight.”
“penetration is proportional to velocity squared.”
"wWhere wall drag is predominant, penetration is inversely proportional

to arrow diameter.”

Bullets vs Arrows

Dan Quillian of Archery Traditions reports that arrows penetrate sand
bags and/or water deeper than do bullets. He's talking about steel-
jacketed bullets weighing 150 grains traveling 2,800 ft/sec. And he is
talking about arrows having tips shaped identically to the bullet tips,
weighing 600 grains and traveling 173 ft/sec. Let's calculate the
comparative energy and momentum. Recall that energy equals 1/2 x mass X
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E = 4M/gVe = (150qr/7000gr/#)(2,800Ft/sec)?/(2 32.2ft/sec?)
E = 2,608 ft=-1b. for a bullet weighing 150 gr traveling 2800 fps.
£ = 1w/qv2 = (600gr/7000gr/#)(173Ft/sec)?/(2 x 32.2ft/sec?)
E = 40 ft-1b for an arrow weighing 600 gr traveling 173 fps.
M= (Wg) xV= (1509r/?0009r/#/32.2ft/sec2) x 2,800 ft/sec
M = 1.86 1b-sec for a bullet weighing 150 gr traveling 2800 fps.
M= (Wg) xV = (600gr/7000gr/#/32.2ft/sec?) x 173 ft/sec
M = 0.46 1b-sec for an arrow weighing 600 gr traveling 173 fps.
Recapitulation
Energy Momentum Weight Speed
(ft-1b) (1b-sec) (grains) (ft/sec)
Arrow 40 0.46 600 173
Bullet 2,608 1.86 150 2,800

Obviously, since the bullet carries much more of both energy and momentum
and has the same shape tip, one would expect the bullet to penetrate more
deeply. I don't pretend to fully understand what the differences are, but
my seat-of-the pants feeling is that the form of energy transfer is much
different between bullet and arrow. The bullet, while traveling fast, is
delivering it's energy to the sand bag by impact mechanisms. By the time
the bullet slows to the arrow's velocity, two things give it less
penetration power. One is that it may not be traveling straight. The
second is that weighs much less than the arrow.

ddk END *dkk

Page 13=9.



ARCHERY SIGHTS

The modern bow uses sights at
the front of the bow. Typically,
five pins are set, each for a
different range. Many bows are also
equipped with a "peep" sight, which

is an orifice imbedded within the
bow's string through which the
archer looks. The peep sight is

needed by those archers who have

difficulty anchoring in exactly the
same position every time. See
Figure 1.

Highest pin:

The geometry of archery is such
that there is one pin location which
is higher than any other, regardless
of range. Usually the range for
which this highest pin is correct is
between 7 and 10 yards. Ranges
shorter than or longer than 7 to 10
yards use lower pins. See Figure 2,

Recommended yardages for pin settings

for hunting &/or field shooting:

Always set the highest pin at
10 yards. Why? First, it is an
easy number to remember. Second, it
is the only pin which is correct
over a wide range, extending from
about 6 yards to about 13 yards.
See Figure 2. Although theory would
say to use (perhaps) 8 yards, the 10
yard pin is almost exactly the same
as the 8 yard pin. By setting the
10 yard pin, which is just a tiny
bit lower than the 8 yard pin, the
range over which the 10 yard pin is
used is extended. Typically, the 10
yard pin is the correct pin to use
when the target is anywhere between
6 yards and 13 yards.

Set the second pin at 20 yards.
Why? When shooting at targets which
are at ranges between pins, the
archer must "gap". For instance, if
the target is 60 yards off and the
pins are set at 50 and 70 yards, the
archer splits the distance between
the pins. Beyond a range of about
30 yards, the geometry of archery is
such  that linear interpolation
between pins works correctly. But
it does not work correctly between
10 yards and 20 yards. Why?  The
geometry of the bow and arrow puts
the arrow below the eye and sights
by an amount which is significant at

short ranges (under 20 yards) but
which 1is not significant at Tlonger
ranges (over 20 yards). Thus
setting a pin at 20 yards does two
things. First, it provides an upper
end of ranges which can be "gapped"
in a linear fashion. In other
words, to hit a target at 25 yards,

put the target half way between the
20 yard and 30 yard pins. Second,
the 20-yard pin delineates the Tower
end of ranges which must be gapped
in a non-linear way. Half way
between the 10-yard and 20-yard pins
is not correct for 15 yards; rather
it is correct for about 17 or 18
yards.

Put the next three pins either
at 30, 50 & 70 yards or at 40, 60 &
80 yards. The decision should be
based upon your own preferences.
The author, for instance, has a 30-
yard range in his backyard, so he
uses 30, 50, 70, Do not use more
than 6 pins. They are not necessary
and tend to confuse the shooter with
too many pins.
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Bow Sight Geometry:

Figure 1

December 13, 1986
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LINE OF SIGAT

PEEPr SIGHT =
A RROW AJECTORY
HIGHEST PIN & i

CORRECT

I1lustrates that highest pin is correct at only one
range but is nearly correct over a wide range.

Figure 2 ... Bow Sight Geometry: Highest Pin
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The author does not heed his
own advice exactly. He has two
compound bows, one & 55-pound Martin
Cougar target bow and the other a
69-pound Martin Tiger hunting bow.
The 55-pound bow has pins at 10, 20,
30, 50 & 70 yards (per above
recommendations). The 69-pound bow
has pins at 10, 30, 50, 70 & 90
yards. Why no 20-yard pin? Because
the author's single-plane sight will
not permit pins set as close
together as needed for 10-yards and
20-yards.

Very close ranges:

If you want to shoot 3
rattlesnake at 2, 3 or 4 yarcs, what
pin do you use? You ought to know.
The 20, 30 and longer pins are also
correct at much shorter ranges. See
Figure 1. The author's target bow's
20-yard pin is also correct at 11
feet, and it's 30-yard pin is
correct at 6 feet. The author's
hunting bow's 30-yard pin is correct
at 8 feet. As a practical matter,
the author recommends that you learn
by trial-&-error for what (very
close) ranges your 20 and 30-yard
pins are correct. If the range is
closer than 6 to 8 feet, don't shoot
the arrow; stab with it!

See Figure 1.
Calculation of Sight Pin Locations

Tfor horizontal shots)
See Figure 3.

Assumptions:

1. Air friction is non-existent,

2. Pin sights are in a plane
perpendicular to arrow.

3. A peep sight is imbeded within
bow strinag. If no peep sight is
used, the eye's location should be
used instead.

Definitions:

1. Range is the horizontal distance
to the target from the tip of the
arrow.

2. Pin sight reference point is as
high above the arrow as is the peep
sight.

3. Parallax is the angle between
the peep, the target, and the arrow.

Pin Siaht Settings:

Pin sight locations are
computed by considering the combined
effects of parallax and of arrow
elevation angle.

Parallax: See Figure 4.

Parallax 1is the angle created

by virtue of the archer's line-of-
sight being above the arrow.
Parallax is maximum at zero range,

at which ranage the archer would look
(almost) at the tip of the arrow.
"Almost" refers to the fact that the
tip of the arrow is not usually in
the ©plane of the range pins
(although it could be). The angle
at zero range is the angle from peep
sight to intersection of arrow with
plane of sighting pins and then back
along arrow shaft. Parallax angle
gets smaller as range increases,
going to zero at infinite range.
The parallax angle is negative
except when arrow is at such high
elevation that tip is higher than
eye or peep sight.
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To visualize the effect of
range on parallax, visualize an
arrow incorporating a flashlight,
the beam of which is finely focused
in the direction the arrow points.
Point the beam (and thus the arrow)
at the target, starting at zero
range. Note the pin sight setting.
Then back away from the target.
Note that the pin sight setting will
rise, rapidly at first. At Tong
range, the pin sight will be as high
above the flashlight-arrow as is the
peep sight. See Figure 4.

Arrow elevation angle:

Ignoring air friction, the
formulas describing arrow elevation
angle above horizontal when shooting
at a target at the same elevation
are:

A = (1/2) arcsin(RG/Vz), Equation

where: R = range

V = initial velocity

A = elevation above
horizontal

g = gravity = 32.2 ft/sec2

Combined Effects: See Figure 3.

The parallax angle diminishes
rapidly as the range increases from
zero. Typically, it has diminished
from 8° at zero range to less than
1° at 10 yards. During this same
change of range, the arrow's
elevation angle typically changes
hardly at all (from zero degrees to
somewhat less than one degree). The
result is that the proper Tlocation
for a sight pin when going from zero
range outward first rises and then
falls. The range which results in
the highest sight pin 1is, as a
practical matter, the closest range
for which sight pins will be used.

On the author's bow, this range is
at 8 yards. There is no perceptible
change at 7, 8, & 9 yards.

When 1looking through the peep sight
at the pin sight reference point,
the line of sight will be parallel
to the arrow. The included angle
between (imaginary) reference pin
and actual pin is the sum of the
absolute values of parallax angle
plus elevation angle.

Sight locations: The final formula

for pin sight locations is:

h = 1 tan[0.5 arcsin (Rg/VZ) +
arctan (a/(R+1)], Egn. #14-1,
where

h = Distance from high reference
point in plane of ©pin-sight.

High reference point is as high
above arrow  as is eye or
peep sight.

a = Distance from eye or peep sight
to arrow.

1 = Distance from eye or peep sight
to plane of peep sight.

R = horizontal range from plane of
pin-sight to target.

= gravity = 32.2 ft/secz.

q
V = velocity of arrow as it Tleaves
bow.
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Range at which pin is highest

The formula for the range at which
the pin is highest is:

R = V(2a/g)% - 1, Equation #14-2
Tris formula is derived by noting
that the range at which the pin 1is
highest will preveil when the
parallax angle and the arrow
elevation angle are equal.

Refer again to Figure 3 for
what each parameter in the above
formula is.

Irspecting the formula, one can
decuce that:

15 Range increases directly with
arrcw velocity.

2. Range increases as the square
root of "a", which is the height of
the peen sight above the arrow.

Calculations using the dimensions of
the author's bows are:

]

27" a = 3.9"

0
n

& .
50 _é;xfic?

| séc 32.2 ‘ﬂ;éﬁzxfﬂﬁi
al’
12°/FF

—

&
: ;50?5‘ {o .aozmj- 2.25ft

£+

= |50 g..% 0. [923ec - 2.25H

al.3 4t -a.astt

19.1 1
G'L/ ‘.SJ C‘f;)f }5‘0_6;5>.

Substituting other velocities
yields:

Velocity Ranage

150 fps 6.4 yards
175 fps 7.5 yards
200 fps 8.7 yards

250 fps 11.1 yards

Substituting other "heights of eye"
at 200 fps yields:

1
2

Height Range
or -0.8 yards.
1" 4,0 yards.
2" £.0 yards.
3" 7.6 yards.
3.9" 8.7 yards.
hy 10.0 yards.
6" 11.0 yards.

Distance Between Pins

The formula for pin locations
(Equation #14-1) cannot be used in
the real world of archery to
actually locate a particular pin.
The complex dynamics of arrow launch
are not recognized by the formula.
Spacing between pins can, however,
be computed. The correct way to do
so for frictionless flight is to
calculate the predicted values of
"h" at the two ranges of interest
and then subtract one from the
other, wusing Equation #14-1. A
computer print-out for the author's
bow follows:
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TABLE 14-1 ... PIN LOCATIONS VERSUS RANGE (Frictionless Flight)

Bow = Martin Cougar Draw weight = 55#
1 = Peep-to-pin plane: 28.75"
a = peep-to-arrow height: 3.88"
V = velocity: 180 ft/sec
Maximum range: 335 yards
Formulas: R,max = V2/9

P = parallax = a/(R + 1)

arrow elevation = 0.5 arcsin (RG/Vz)

A=
h = (=) pin height = 1 tan (A + P)
Range Parallax Arrow (A+P) h Change

Elevation of "h"
(yards) (degrees) (degrees) (degrees) (inches) over

0 7.72 .00 772 3.90 previous

2 2.20 17 2.37 1.19 10 yards

4 1.29 .34 1.63 .82 (inches)

6 .91 .51 1.42 11

8 .70 .68 1.38 .69

10 « Bl .85 1.43 sl

20 .30 1.71 2.01 1.01 .292
30 .20 2.57 2.77 1.39 .382
40 15 3.42 3.58 1.80 . 408
50 .12 4,29 4,41 2.22 L420
60 .10 5.15 5.Z5 2.64 .428
70 .09 6,02 6.11 3.08 .434
g0 .08 6.90 6.98 3.562 .440
90 .07 7.78 7.85 3.96 . 446
335 .02 45,00 45,02 28.77
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Inspecting the "change of "h" over
previous 10 yards" shows what might
be expected, namely:

1. The change is small (0.29")
between 10 and 20 yards.

2. The change is much larger (.38")
between 20 and 30 yards.

3. The change reaches a steady
number beyond 30 yards, only
gradually increasing beyond from
0.41" to 0.45",

It 1is for the above reasons
that the author recommends setting a
10-yard pin (which is the highest
pin), a 20-yard pin (which separates
the ranges at which linear
interpolation between pins is
correct) and then either 30/50/70 or
40/60/80.

Another way to understand pin
spacing is to re-work Equation #6-12
which was:

dR/dA = (-2vZ/q) cos (2A), Equation
#6-12,

The pin spacing, were one to ignore
parallax, would relate to the
reciprocal of that, or:

1/((=2v2/q) cos (2A))

dA/dR
g/2V2cos(2A)

The "dA" change will be the angle
defined by the pin spacing and peep-
to-pin distance such that dh/1 = tan
dA. Thus:

dh = 1 tan dR
= 1 tan [(dR x q)/2v2 cos (2R)]
Example:
V = 180 fps
dR = 10 yards
A = 3° (per previous calc for

about 35 yard range)
cos (2R) = cos €° = 0.9945

(dR x g)éZVz cos (2A) = 10 _yds
x 32.2ft/secl/(2 x (180ft/sec)’ x

0.9945
= 0.01499 radians = 0.859
degrees
tan dr = tan 0.859 degrees = 0.01499
dh = 1 x 0.01499

28.75" x 0.01499 = 0.431"

This method of pin space calculation
gives the same result as the longer
one, but it has the advantage of
making obvious the parameters that
matter in pin spacing. Look again
at the formula:

dh = 1 tan [(dR x g)/2v2 cos (2A)],
Equation #14-3.

For the small angles used in
archery, the tangent of an angle and
the angle itself are pretty much the
same thing. Thus:

dh = (1 x dR x q)/(2V2 cos (2A)),
Equation #14-4

The first term, "1" is peep-to-
pin-plane distance. The longer "1"
is, the larger the pin spacing.
Some hunters put their pins on the
near side of their bows to avoid
snags; their pins will end up more
closely spaced.

The second term, "dR" is the
range between pins. Obviously, pins
twenty yards apart are spaced twice
as far as are pins ten yards apart.

The "g" (gravity) term is 2
constant. The "cos(2A)" term varies
only a 1ittle with range.

The "v2" term is the only big
variable that isn't dintuitively
obvious. The formula says that pin
spacing is inversely proportional to
the square of arrow velocity!

Examples of 10-yard increment
spacing for the dimensions of the
author's bow are:
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Table 14-1 ...
FRICTIONLESS

PIN SPACING,

Assumed data:
Peep-to-pin-plane distance

28.75"

i

Arrow elevation angle 3*

Spaces are for pins at 10-yard

intervals. ﬁ GOQ
Formula: dh = ——-:_—/:i
AVE com ZA

140 FDE wwins DLTIY
160 fp
1 f

-
&

S L I 0.54"
S ... 0.43"

200! FH% cuwe Oudb”

220 fpS o5 ae 0.28"

These numbers are reasonably
accurate for the real world of
archery. The velocity to use is 2
weighted average of Tlaunch and

Table 14-2 ...

arrival velocities, weighted:
V,avg = 1/4 x (3 x V,launch + 1 x V,
arrival).

Second, the
30 yards,
results.

range has to be beyond
least parallax negate

PIN SPACING WITH FRICTION

Chapter 8, "Trajectories with
Friction", delineated how to compute
actual arrow elevation angles with
friction. I used the same 2117
arrow with 65" 3-fletch with field
point. It weighs 527 grains and has
a drag of 386 grains at an initial
velocity of 200 fps. Calculating
the velocities at each 10-yard
interval and the arrow elevation
angles permits calculating the pin
locations and thus the actual space
between pins. Data is printed in
table below. The "dh" column shows
the data sought, the distance
between pins.

PIN SPACING, ACTUAL

Range Velocity Parallax Elevation (A * %l h dh

vds) (ps)  (degrees) (dearees) (deg) (M) [0)
0  200.0 7.720 ,000  7.720 3.897" -
10 196.5 .572 698 1.2700 637 <3.3"
20 193.0 .297 .409 1.706 .856 .22
30  189.5 .201 133 2.338 1,172 .32
40  186.0 .151 870 3.021 1.517 .35
50  182.6 122 622 3.744 1.881 .36
60  179.2 .102 389 4,491 2.258 .38
70 175.9 .087 171 5.258  2.646 .29
80  172.5 .076 969  6.045 3.045 .40
90  169.2 .068 784  6.852 3.455 .41
100 165.9 .061 616  7.677 3.876 .42
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Pin Spacing Parameters

It is all very nice to do a
computer print-out of a bunch of
numbers, but they don't mean much
unless some conclusions can be
drawn. The question in my mind was,
"What velocity does pin spacing
correspond  to: Final? Average?
Terminal?" My assumption was that
the pin spacing between the 80 and
90 yard pins, for instance, would
correspond to the average arrow
speed when traveling between 80 and
90 yards. To answer that question,
| asked the computer to figure arrow
elevation angles first with friction
and then without friction. The
procedure for calculating with
friction is given in Chepter 8,
"Trajectories With Friction".
Without friction, the formula is:

A = 0.5 arcsine (Rg/VZ}, Equation
#6-10

However, when computing without
friction, I asked the computer to
use various velocities. In the table
below, the first columns under
"frictionless" show results using
initial arrow velocity unchanged at
all ranges. Not unexpectedly, it
shows flatter shooting and with less
change of arrow elevation for a
given change of range than for shots
with friction.

In the second set of columns, I
used a weighted average velocity
where the initial velocity has a
weight of 3 and the final velocity
has a weight of one. Why? Because
that weighting gave better
correlation than any other.

In the third set of columns, an
average of launch velocity and
arrival velocity was used.

In the fourth set of columns,
the average velocity over the range
between pins was used. For instance
at 80 yards, the average of the
velocity at 70 yards plus the

velocity at 80 yards was used.

It was much to my surprise that
the 3:1 weighting of launch velocity
versus arrival velocity gave good
correlation and that bad correlation
came from using the interval's
average velocity.
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Table 14-3 ...

ARROW ELEVATION ANGLES, WITH & WITHOUT FRICTION

yds

10
20
30
40
50
60
70
80
90
100

<ao

200.
196.
193.
189.
186.
182.
179.
175.
172.
169.

With friction

2

.000

.698
1.409
2.133
2.870
3.622
4,389
5.171
5.969
6.784

165.9 7.616

N.A.

.698
711
.724
s 037
o 7
767
.782
.798
.815
.832

< Actual data >

Without Friction2
A = 1/2 arcsine(Rg/V<)

3Vo+Vt

A

.000 N.A, .000

.692
1.384
2.077
2.772
3.468
4.166
4,866
5.570

.692

.692

693

.694

.696

.698

.701

.704

6.277 .707

6.988 .711

.698
1.409

< Best fit>
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N.A.
.698
711
.724
o139
753
.768
.784
.803
.820
.840

Vo+Vt

A

.000

.704
1.434
2,191
2.977
3.792
4,639
5.518
6.436
1.391
8.387

dA

N.A.
.704
730
od 97
.786
.815
.847
.879
.918

.954

8.

.000
.704
.460
w212
. 147
.088
.101
.193

<377

664

.997 10.064



Summary of Pin Spacing Factors

The spacing between sighting
pins depends upon:

1. Arrow speed.

2. Geometry of peep sight and
sighting pins.

3. Arrow friction and weight.

It was quite a surprise to the
author to learn that arrow friction
and weight are very minor factors in
pin spacing. They are no factor at
all at short ranges.

The geometry of peep sight and
sighting pins is the only factor at
very short ranges and, for
conventional archery velocities
configuraticns, 1s very sigrificant
out to 30 yards.

Arrow  launch velocity is the
predominant factor determining pin
spacing beyond 30 yards. The values
given in Table 14-1 are reasonable
accurate, particularly for the
middle distances of 30, 40, 50 & 60
yards. They are computed from the
equation:

¢h = (1 x dR x g)/(2v2 cos 2A),
Equation 14-4,

where:

dh = pin spacing (inches or other
measure)

1 = peep-to-pin-plane distance
(inches cor other measure)

dR = range increment (feet)

g = 32.2 ft/sec?.

V = launch velocity (ft/sec)

A = arrow elevation angle at
launch

Sample Calculation of Velocity from
Pin Spacing:
The author's Martin Cougar target

bow has the following data; use it
to compute arrow speed:

Peep-to-pin distance = 28.0"

Pin spacing: 10 yd to 20 yd = 0.300"
20 yd to 30 yd = 0,406"
30 yd to 50 yd = 0.938"
50 yd to 70 yd = 1.000"

Re-working Equation 14-4 to solve
for velocity, knowing pin spacing
yields:

V = (1gdR/2dh cos 2A)*
14-5,

Equation

where 1 = peep-to-pin distance
= 28.0"

qravity = 32.2 ft/sec?

g

dR = difference in range between
pins = 20 yards

dh = space between pins = 0.938"
A = % arcsin (Rg/Vz) where
R = average range between pins
= 40 yards
V = arrow velocity & 1st aprox

170 fps.

Note that a first approximation of
arrow velocity has to be made in
order to calculate arrow elevation
angle. A large error in this
approximation will make only a small
difference in final result.

I've chosen to use the 30 yd to 50
yd pin spread because the minimum
must be at least 30 yards in order

that ©parallax may be ignored.
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Simultaneously, the shortest range
should be used in order that the
effect of the slowing of the arrow
during flight be minimized.

Sample calculation is:

1

X 3{7‘ X3Z.Z ﬂ.ﬂz

. 40
A= 69.55'¢thcaaa~ZT CI70FE N
Sec
A = 0.5 arcsin (3864/28900)
= (0.5 arcsin 0.1337 = 0.5 x 7.68°
= 3.84°,
V = (1gdR/2dh cos 2R)*%
Equation 14-5, :E[: £ 4
28" x381l5; 2 k‘laﬂJ‘ 3@
V =
2 x0.938" cod 9"3.8“‘0
L
LT) o
L. | 5o £f f5aa®
/.876"@#1'1650
V = [54,096/1.859]% ft/sec
V = 170.6 ft/sec.
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UPHILL/DOWNHILL EFFECTS

What happens when shooting
uphill or downhill? A number of
things.

Velocity:

If shootina uphill, the arrow
will arrive at a slower speed. How
much slower? That depends strictly
upon how much higher the target is.
Arrow velocity and target elevation
are inter-related as follows:

vaIEG = VOEIZG - H,

where V, = original velocity &

Ve finagl velocity.

H =  target elevation
compared to launch elevation

If the target dis at the same
elevation as the archer, arrow
should arrive at same speed at
launched, assuming friction is
ignored. If the target is Tlower,
speed will be greater. If the
target is higher, speed will be
slower. Working the above formula
to yield final velocity yields:

= -2qH)15
Equat1on Q]

Note that formula cannot apply when
"H" is higher than the arrow can go.
The highest an arrow can be shot was
given in Chapter #6 as:

=V 2/2q,
EouaTion #69 ;

Note also that these formulas ignore
friction. It was shown in the
chapter on friction that an arrow
shot straight down is typically
going roughly at "terminal"”
velocity. In other words, & typical
arrow shot straight down will
neither g@ain nor lose much speed.
Thus any attempt to use the above
formula to predict arrival speeds

when the target is significantly
lower than the launch site will be
inaccurate. On the other hand, it
was shown in the chapter on
"Trajectories with Friction" that
the use of Tlaunch velocity to
predict pin sight spacinag was aquite
good, Thus I conclude that the
mathematical analysis of uphill
shootina can ignore friction without
much error. Downhill shooting
analysis in this chapter will ianore
friction even though friction errors
may be rather significant.

Pin to Use:

Initially, in this chapter,
parallax will be ianored. The
auestions to be answered are similar
to the ones field archers pose to
one another upon sighting an wuphill
or downhill target. The question
are, "How far is the target, and
what sighting pin should be wused?"
The "How far 1is the target?" s
interpreted as the direct slant
range as measured by a taut tape or
a range finder. The "What sight pin
should be used?" part is what this
chapter will strive to answer. The
author's field experience is that
each archer has a different answer
for the range pin to use, even
though a1l are shooting at the same
target. The calculations will
confirm that, due to differences in
arrow velocity, differences in arrow
friction and weight, and differences
in parallax, archers use different
pins to shoot at the same target.
The mathematical analysis will
initially ianore friction, arrow
weiaght, and parallax.

Trajectory Formula

The formula which locates every
position along a frictionless
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arrow's trajectory is:

y = x tan Ay - qx2/2\’2 coszﬂH,
Egn 15-1 ... where:

y = elevation with respect to
launch elevation.

x = horizontal distance from launch
site. .

g = gravity = 32.2 ft/sec®

V = velocity of arrow at moment of
launch

Ay = Anale of arrow launch above or
be?ow horizontal.

See Fiqure 15-1 .. Uphill/Downhill
Geometry.

Equation 15-1 1is usec to compute
exact lccaticons along an arrow's
trajectory when the launch elevation
angle is known.

Launch Angle

By manipulating Equation 15-1,
a formula for calculating the needed
launch angle can be derived. The
formula is:

ﬁﬁ = arctan [N - (N2 - 2N tan AE -
1)7] “en Egn. 15-2 ... where:
N = V¢/(aR cos Ag).

A, = Launch angle above or below
horizontal.
he = Elevation angle of target

above or below horizontal.
a = gravity = 32.2 ft/sec’.
R = range, slant, from Tlaunch
direct to target.
See Fiqure 15-1 ... Uphill1/Downhill
Geometry.

There are technically two angles
which will get the arrow to the
target, one being the traditional
flat trajectory and the other being
a high lobbinag shot. By adding
rather than subtracting the sauare
root function in Equation 15-2, the
high shot can be computed.

The launch angle compared to
the line-of-sight is the angle above
horizontal less the target elevation
angle, given by:

»& =ﬂ -ﬂ'E.
Eouation 15-3.

Equivalent Horizontal Range

The question we set out to
answer was, 1in effect, "What range
would an arrow get if it were shot
at a horizontal tarcet at an anale
ahove the horizontzl equal to the
anale above the line of sicht? In
Equation 15-2, we calculated the
angle above line-of-sight for @
uphill or downhill shot. Now the
question is, if that same anale were
used above the horizontal, how far
would the arrow travel horizontally.
The answer can be computed by using
the formulaz given 1in Chapter 6,
“Trajectories", for horizontal
frictionless shots:

A = % arcsin (Ru/Vg)
Equation #6-11.

Setting A equal to Ag yields:

Ag = % arcsin (RG/V2).
Rearranging y%e1ds:
arcsin (RG/V¢) = 2Ac.
Rearrgnging yields:
RG/VS = sin(2Ac).
Rearranging yie?ds:

Re = (V2/6)sin(2Ag)
Equation #15-4, where

RE = range, eauivalent horizontal.
V- = velocity of arrow at_launch.
G = aravity, 32.2 Ft/secz.

Ag angle above line-of-sight of
launch to uphill or downhill taraet.

Sample Calculation

Assumed data: Vv = 200 ft/sec.
R = 60 yds = 180 ft. ﬂE = -40°,
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N = V2/(Rg Gos Ag) =
(ZOOft/seg) /(IBEft/sec X
32.2ft/sect x cos-40°)
N = 9,0090
Ay = arctan[N—(N2 - 2N tan-40° -
1?%] = arctan[N-(N2 + 1.6782N - 1)%]
= arctan[9.009 - (9.009¢ + 1.6782
x 9.0090 - 1)%]
= arctan[9.009 - (81.162 + 1&112
- 1)%] = arctan[9.009 - 95.2817%]
= arctan[9.009 -9.7612] = arctan
-0.7522
= -36,95° = launch angle below
horizen shooting at a taraet 40°
down.
Ee ﬂﬁ - Ag
-36.95° -(-40°) = + 3.05°
launch angle above line-of-
sight.

Re = (V2/6) sine 2pg

" 3pof+’+/:2c i (2x3,05°)

1,242 ft sine 6.10°

1242 ft x 0.1063 = 132 ft
= 44,0 yards = equivalent

horizontal range.

Conclusion: For a 200 fps arrow
shooting 40° down at a range of 60
yards, shot should be made as though
shooting from 44 yards. Keep in
mind that parallax has been ignored.
Since the parallax at 44 yards is
different than at 60 yards, some
error exists. Beyond a range of 30
yards, parallax is fairly small and
the differences between parallaxes
is very small.

Tabulation of Data:

The formulas and procedures for
computing equivalent ranges for
uphill and downhill shots given in
this chapter shed very little light
upon the parameters which influence
the equivalent ranges. The only
thing to do, then, is to tabulate a
large number of variables and see
how the results vary.
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Table 15-1 ... 60 vards @ 150 fps:

Terget Ay Ag RE
angle
(deg) (deg) (deg) (yds) (%)
89 89.15 +15 1.2 2.1
a5 50.86 5.86 47.3 78.8
30 36.94 6.94 55.9 93.2
15 22.47 7.47 60.1 100.1
10 17.53 7.53 60.5 100.8
5 12.82 7.52 60.5 100.8
0 7.46 7.46 60.0 100.0
-5 2.35 7.35 59.1 98.5
-10 -2.82 7.18 57.8 96.3
-15 -8.03 6.97 56.1 93.5
-20 -13.29 6.71 54,1 90.1
-25 -18.59 £.41 51.7 86.1
-30 -23.92 6.07 49.0 81.6
-40 -34.72 5.28 42.7 7 bR |
-60 -56.64 3.36 27.2 45.4
-70 -67.72 2.28 18.5 30.8
-89 -£8.88 12 9 1.6
Table 15-@ ... 60 yards @ 250 fps:
Target Ay AS Kg
angle
(deq) (deg) (deq) (yds) (%)
89 89.05 .05 1.1 1.8
45 46,95 1.95 43,9 73.2
30 32.36 2.36 53.2 88,7
15 17.60 2.60 58,7 97.8
10 12.64 2.64 5°.6 99.3
5 7.66 2.66 60.0 100.0
0 2.66 2.66 60.0 100.0
-5 -2.36 2.64 59,5 99.2
-10 -7.40 2.60 58.6 97.7
-15 -12.46 2.54 57.3 95.5
-20 -17.54 2.46 55.5 92.5
-25 -22.64 2.36 53.4 88.9
-30 -27.75 2.25 50.8 84.7
-40 -38.02 1.98 44,7 74.4
-60 -58.72 1.28 28.9 48.1
-70 -69.13 .87 1¢,7 32.8
-8¢ -£8.96 .04 1.0 i
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Table 15-3 ... Recapitulation of Equivalent Horizontal Ranges

for Slant Ranges of 30, 60 & 120 yards @ 150, 200 & 250 fps

-------------------------- - -

Range = 30 yards

Velocity = 150 200 250

Elevation (fps) (fps) (fps)
45° 22 yds 22 vds 22 yds

30° 27 27 26

15° 30 29 29

0° 30 30 30

-15° 29 29 29

-30° 25 26 28

-40° 22 23 23

- R

Pange = 60 yards

Velocity = 150 200 250

Elevation (fps) (fps) (fps)
45° 47 yds 45 yds 44 yds

30° 56 54 53

182 £C ca £En

0° 60 60 60

-1E° 56 57 87

-30° 49 50 £l

-40° 43 44 48

A T E ST T eSS EEEEEEE - - -

Range = 120 yards

Velocity = 150 200 250

Elevation (fps) (fps) (fps)
45° 116 yds 96 yds ©1 yds

30° 125 113 1C¢

15° 126 121 119

0° 120 120 120

-15° 109 112 113

-30° 93 97 100

-40° 80 85 87

- e e -

Conclusions:

Three archers standing side-by-side shooting at the same target
will need tc use different range pins. For 2 target uphill 45° at 60 yards,
for instance, the pins to use will be 47 vards, 45 yards and 44 yards
respectively for archers launching at 150 fps, 200 fps and 250 fps. See
Table 15-3 above.

The oin to use is almost always a shorter range pin. The only
exceptions are when the target is slightly uphill, See Table 15-1 for €0
yards at 150 fps. The exception ijs so small that it can be taken as a rule
both uphill and downhill shots use the actual or shorter range pins.
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Thumb Rules

1. If target is between +15° and
-10°, make no correction,

2. For targets higher than +15° or

lower than -10°, shoot as though

target were closer.
3. For downhill shots, the amount

of correction needed increases with
range.

Dimensionless Parameters

The preceeding mathematical
analysis is frustrating in that
there is no clear reason why only a
slightly uphill shot should use a
longer siahting pin. Worse, there
is no clue as to why some slightly
uphill shots don't use longer pins.
Academic type engineers have a great
fondness for dimensionless numbers,
such as Revnold's numbers, Mach
numbers, Prandtl numbers, Nusselt
numbers, etc., Searching for a
similar approach, I decided to
express range as a dimensionless
ratio of range divided by maximum
horizontal range. The answers come
out as dimensionless pin-to-use
range divided by slant range.

Equations 15-2 & 15-4 can be
generalized by noting the the
maximum horizontal range is:

B = Vz/g, Equation #6-4.

Substituting yields:

v2/(gR cos Ag)
R /(R cos 55}. Using this in
Ean. lgtf yields:

N

won

A, = arctan[( /R cos Ag -
a

{“?n, x/R cos AE) b xZRma tan E/R

cos"AX -1)%]  © Equation’ 15-5.

Rearranging Equation #15-4 and

dividing both sides by R yields:

Re/R = (R.../R) sine (2(Ay - Ag))
EEuation lgfé. ? E

With these two formulas, we can look
at which pin to use without looking

at arrow velocity nor specific

ranges. Rather, the ratio of
maximum range to slant range is one
input parameter. The target's
elevation angle is the second input
parameter. The ratio of pin-to-use
versus slant range is the output
parameter. The resulting output is
applicable to thrown rocks,
artillery shells, rifle shots, es
well as archery shots.

Page 15=-7.



Table 15-4 ... Ratios of Pins-to-Use versus Slant Ranges

TARGET Ceiardonsease o sovess R/RsM teieeenann e Y O T C seseeiis e >
ELEVATION .05 .1 o2 #d .4 oD .6 o .8 9 1.0
ANGLE  =em=-me--scccecemsccccscccsssesscsccsssemeeoooSSSS e m S SS S SSeeeT
89°¢ .018 .018 .020 .021 .024 .035 - - - - -
75° .265 .273 .290 .314 .352 .452 - - - - -
60° .511 .524 ,553 .592 .648 .759 - OUT OF RANGE -
45° .720 .734 .766 .806 .859 .944 - - - - -
40° .779 .792 .823 .861 .910 .983 1.162 - - - B
35° .831 .844 .873 .907 .951 1.011 1.125 - - - -
30° .877 .889 .915 .945 .982 1.031 1.111 - - - -
15° .972 .979 .993 1.008 1.025 1.045 1.070 1.107 - - -
5 .998 1.001 1.005 1.010 1.015 1,021 1.027 1.035 1.046 1.066 -
g° 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
=187 960 .954 .942 .930 .919 .908 .896 .884 .871 .858 .842
-30° '855 .845 .826 .809 .792 .776 .760 .745 730 .715 .701
=45° 695 .684 .663 .644 .627 .611 .597 .583 .570 .557 545
-6C° 490 .480 .463 .448 .434 422 .411 .401 .391 .382 .374
=75° 953 .247 .238 .229 .222 .215 .209 .204 .199 .195 .190
-8¢° 017 .017 .0l .015 .015 .014 .014 .014 .013 .013 .013

Typical archery shots range from 0.05 to 0.50 in above table,
depending upon the bow used. For instance the R/Rpax ratios used
in Table 15-3 amount to:

Velocity Rnpax 30 yards 60 vards 120 _yards
150 fps 233 yds 0.13 0.26 0.52
200 fps 414 yds 0.07 0.15 0.29
250 fps 647 yds 0.05 0.09 0.19

I ar personally most frustrated that a clear description of when
to shoot long and when to shoot short is not obvious. The
difficulty can be seen by studying the target which is uphill
30°. At short range, it is to be shot as though the range were
only 87.7% of what it is. At long range, it is to be shot as
though the range were 111.1%! My recommendation is to prepare @
table for your own bow's speed and for typical ranges. The
author's 74# compound hunting bow shooting a 30" 2117 hunting
arrow has a velocity of about 200 fps. Using the data in tables
in this chapter, the following table for my bow's particular
arrow velocity applies:

Table 15-5...PINS TO USE FOR 200 FPS ARROW

TARGET 2 vl S it PANGE &uieissssssisns >
ELEVATION 30 YARDS 60 YARDS 120 YARDS
PIN (%) PIN (%] PIN (%)

+45° 22 (73) 45 (75) 96 (80)

+30° 27 (90) 54 (90) 113 (94)

+15° 29 (97) 59 (98) 121 (101)

0 30 (100) 60 (100) 120 (100)

-15° 29 (97) 57 (95) 112 (93)

-30° 26 (87) 50 (83) 97 (81)

-40° 23 (77) 44 (73) 85 (71)
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ACCURACY STATISTICS

The shape and size of groups of
arrows shot in a hunting environment
i< what this chapter will compute.

Four elements are involved:

Launch accuracy.

Range estimation accuracy.
. Range.

. Whether range is estimated
short or long.

5 M —

To do this, statistical analysis of
zctual data will be done. The data
analyzed consists of the author's
own shooting results at 30-yards
plus the author's own range
estimation results at various ranges
from 8 to 100 yards.

¢ nymber of facts a2nd/or assumptions
need to be stated:

First, launch data should show that
shots tend to hit the center of the
target. If they actually group
high, low, left or right, the archer
simply has his pins set wrong. It
would be possible, of course, that
the archer has a flaw which, for
instance, has his good shots
centering on target but his bad
shots favoring right but not left.
My own shots don't seem to show any
such tendency. Thus I recorded only
now far from center each hit was,but
did not record each shot's
left/right nor up/down data.

Second, range estimation data might
show an aggregate tendency to be
long or short. My own data showed
zn amazing lack of that. The sum of
all range estimates was  almost
exactly ecgual to the sum of all
ranges estimated. Thus, for the
author at least, the data can be
orocessed with the assumption that
under-estimates and over-estimates
are equally likely.

Third, the absolute accuracy of a
ranges estimated is obviously better
at close range than at long range.
What 1is not obvious but which seems
to be true of my range estimates is
that my accuracy when expressed as a
percent of the range seems to be
constant. Specifically, my accuracy
averages 11% of range. Thus at 20
yards my average error is 11% of 20
yards or +/-2.2 yards and at 100
yards it is +/-11 yards. Accuracy
being a constant percent of range
estimated seems logical and thus is
assumed to be true.

The hit patterns to be expected in a
hunting environment should be
described before presenting the data
and the statistical manipulation of
it. The unioue feature of the
hunting environment is that the
range can be known by one method
only: estimation. This is
different than target archery,
obviously. It is also different
than shooting on field ranges, as
archers tend to memorize field range
distances. Also, more than one shot
is wusually taken on field ranges.
The author's second shot on a field
range 1is as accurate as on a target
range. The author's first shot at a
field target depends upon how well
he remembers from previous use of
the range how far the target is.

The accuracy of hunting shots taken
at close range, particularly those
within the range of the 10-yard pin,
should be as accurate as target
archery. Thus the pattern of hits
should be round at close range, same
as in target archery.

The patterns of hunting shots taken
at long range should show the same
left/right dispersion as  target
shots. But the high/low dispersion
should be much greater due to the
errors in estimation of range.
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Data Analyzed

I shot 100 arrows from 30 yards
to ascertain what to expect at a
known range. Second, I estimated 76
random ranges to ascertain the
accuracy and consistency to expect
in rance estimation. Third, I
mathematically combined the twce
separate elements.

Fixed Range Shooting:

The 100 arrows shot from 30
yards were 2018s, 30" long, with 5"
3-fletckh, Bow was a b55# Martin
Cougar ccmpound with pins and peep

sight. The vresults are tabulated
below.
Table 16-1 ... Tabulation of Arrow Hit Data at 30 Yards

RADIUS ARROW AREA DENSIT Tog(H/A)
(inch) HITS (in¢) (hits/in¢)

.0 2 .20 10.186 1.0080
5 10 1.57 6.366 .8039
1.0 9 3.14 2.865 .4571
11 4.71 2.334 . 3682
2.0 16 6.28 2.546 . 4059
2.5 16 7.85 2.037 . 3090
3.0 14 9.42 1.485 L1719
3.5 6 11.00 .546 -.2631
4.0 7 12,87 .557 -,2641
4.5 2 14,14 .141  -.8493
5.0 4 15,71 .255 =-,5941
5:9 2 17.28 116  -,9365
6.0 0 18.85 .000
6.5 0 20.42 .000
7.0 1 21.99 .045 -1.3422

Total: 100 165 in?
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Finding a mathematically
manipulatable description of the
data takes some doing. In the left
column is the miss distance in 1/2"
increments. "1.0" includes all hits
from 3/4" to 1%" from target center
to arrow center. Inspecting the
"hits" column, it is clear that the
majority of arrows were from 1/4" to
3%" from dead center. Looking only
at the hits versus distance-from-
center, it would appear that one of
the safer places for an insect on
the target face to be would be at
the exact center. That doesn't make
sense. The answer is to note that
the area at each radius 1is larger
farther from center, as shown in the
third column, Dividing hits by area
yields & more meaningful parameter,
namely hits per square inch versus
distance from center of target.
Doing so gives a Tlogical result,
namely that the most dangerous place
for an insect to be is at the center
cf th target. Plottine the
hits/in® versus radius yields a very
steep non-linear curve. Non-linear
curves are not amenable to
statistical analysis, so I searched
for a manipulation which would yield
a linear representation. The
logarithm of the hit density gave
excellent linearity.

Standard deviations:

Statisticians have worked up
mathematical formulas to describe
the probabilities of random events
happening. In the case of target
archery, the "event" is that of the
arrcow hitting any particular
distance away from dead center.
They have manipulated that math in
such a way as to satisfy themselves
that 1 standard deviation includes
68%% of all events; 2 standard
deviations include 95.45%; and 3
standard deviations include 99.73%.

The formulas used and the

calculations themselves are shown in
Figure 16-1.
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Figure 16-1 ... Shooting Accuracy Statistical Calculations

Data = author's results at 30 yards with 55# compound shooting
30" 2018's having 5" 3-fletch vanes and 125-grain field points.

MISS HITS AREA H/A 1og(H/A) ”
x] (3q.in) (hils/i? y) (x%) (¥3)  (xy)
.0 Vs 20 20, .00

186 1.0080 .0 1,016 0
oD 10 1.57 6.366 .8039 .2 .646 .402
1.0 9 3.14 2.865 .4571 1.0 .209 .457
1.5 1 4,71 2.334 .3682 2.3 .136 .552
2.0 16 6.28 2.546 .4059 4.0 ,165 .812
2.5 16  7.85 2.037  .3090 6.3 .095 .773
3.0 14 9.42 1.485 .1719 9.0 .030 .516
3.5 6 11.00 .546 -.2631 12.2 .069 -.921
4.0 7 12,57 .557 -.2541 16.0 .065 -1.016
4.5 2 14,14 ,141 -,.8493 20.2 .721 -3.822
5.0 4 15.71 .255 -,5941 25.0 ,353 -2.970
55 2 17.28 ,116 -.9365 30.2 .877 -5.151
70 1 61.26 .016 -1.7872 49.0 3.194 -12.51
Totals: 40.0 100 165.13 -1.1603 175.5 7.576 -22.88
Averages: 3.08 7.69 12.70 2.265 -.0893 13.5 .583 -1.760
N=13 ZTx-40 X =3,08 Zx* =755
Zxy=-228Z § = /603 § - -0.0813 £y*=7576
2
TR el S e
N-1 13-l '
= 2713 40
2
T X "(EK) 1752 —~ 43 = 2.090
Jx = M| 13 -1
I N )
Sx24 _ 40(-1.1603
2 2
< X ~C_ 490
¥ o B C—W—L | 755 T3
S« - mEx . (1603~ (-0368740)
- intercept = b = =5 N 3
= [, 044

R = m Jx /0— = '0-3(98 *Q.OQD/OJQQ ""15 O.qqg‘-'c.orﬂ/a'i[fm
Y =044l —0.368 X = logie (/W

Oh¥in' o 2,09

Xguyo & 0441 —0,787 = 0,355 = [.80m ¥ & .

X G‘:o . J,04% ~2Ax0.76% » 0 .53 =¥ 0.29 hids/in & .18
o2 =

Ul
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Upon plotting the above data for my 100 shots at 30 yards, I
found:

Standard Radius Diameter Percent Launch

deviations of shots error
0.674 1. 41" 2.82" 50.00% 1.30 mils
1.00 2.09" 4,18" 68.25% 1.94 mils
2.00 4,18" 8.36" 95.45% 3.87 mils
3.00 6.27" 12.34" 99,73% 5.80 mils

T was surprised that there turned out to be a 1Tinear relationship
between standard deviations and launch error.

Launching accuracy

Launching accuracy has nothing to do with target range. If
the arrow is shot one deqree left of target, that's the error:
1° left. The resulting miss will, of course, depend upon range.
1f the range is 100 yards, the miss will be 10 times (at least)
as much as from 10 yards.

"Accuracy", from a statistician's point of view, 1is a
probability term, An archer of known accuracy has a known
srobability of placing an arrow a particular distance from dead
center. The author is not aware of any convention for describing
archery accuracy, so I've adopted the artillery term of "mils" to
describe errors. A "mil" is a miss equal to one one-thousandth
of the range. One mil at 30 yards would be:

1 mil = 30 yds x 36 in/yd = 1,08 inches @ 30 yd.
1,000
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One might have chosen degrees or
radians, but mils work out to be
easy numbers to work with and
understand.

Definition of an archer's accuracy:

On the basis of the above data, I
consider myself to be a "3.87 mil"
archer, as I launched 95% of all
shots with an accuracy of 3.87 mils
or better. When archers say they
can put all their shots within a
group of a particular size they
usually mean that they can put about
95% within a given diameter. Since
95.45% 1is what the mathematicians
call "two standard deviations", this
seems to me like a good definition.
Without going through all the math,
it woulc be easiest to judge your
own accuracy against the 1.0
standard deviation criteria, which
is 68k%. In other words, shoot 100
shots. Find the radius which
¢ivides the inner 68 shots from the
outer 32 shots. Convert that radius
to m1is per above example. Double
those mils to get your "2-standard
deviation accuracy" &/or your "95%%
accuracy'.

Range estimation accuracy:

The accuracy of eye-ball range
estimation varies, on average, from
about 30% of range to 10% range. To
ascertain your own accuracy, take a
range-finder and practice estimating
range. For a simple calculation of
your average accuracy, simply write
down the estimated range, the actual
range, the difference, the
differerce divided by the actual
range &nd multiplied by 100.  Then
take the absolute average by adding
up all the percent errors while
ignorirac the +/- signs and dividing
by the number of estimates. To
ascertain how long or short your
averace estimate is, add all the
estimated and actual rarges and
divide cne by the cther.

To predict the patterns to
expect 1in a hunting environment, I
needed a statistical analysis of my
actual vresults. The data is shown
in Table 16-1. The standard
deviation 1is computed using the
following formula:

D = [((sum(X2) - (sum X)2/N)/(N-1)1%
where:

SD standard deviation

X error expressed as
percent-of-range-estimated

N = number of estimates
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Table 16.1 ... Range Estimation Data

GUESS ACTUAL <.... ERROR ....> GUESS ACTUAL <.... ERROR .4.2>
Tyds) (yds) (yds) (%) (%) (yds) (yds) lyds) (2) (%)
27 30 -3 -10.0 100 35 40 -5 =12.5 156
28 29 -1 -3.4 12 50 45 5 11.1 123
63 60 3 5.0 25 48 39 9 23.1 533
58 52 6 11.5 133 70 70 0 0 0
24 30 -6 -20.0 400 75 75 0 .0 0
48 39 9 23.1 533 32 42 -10 -23.8 567
80 72 g8 11.1 123 8 11 -3 -27.3 744
55 53 2 3.8 14 38 44 -6 =13.6 186
30 34 -4 -11.8 138 40 45 -5 -11.1 123
27 31 -4 -12.9 166 30 27 3 11.1 123
20 24 -4 -16,7 278 40 38 2 5.3 28
38 30 8 26.7 711 42 40 2 5.0 25
75 65 10 15.4 237 43 40 3 7.5 56
40 31 9 29.0 843 38 35 3 8.6 73
22 20 3 12.8 164 85 63 22 34,9 1,219
33 44 =11 -25.0 625 50 57 -7 =12.3 151
50 55 -5 =9.1 83 22 33 -11 -33.3 1,111
45 39 6 15.4 237 50 62 =12 -19.4 375
58 54 4 7.4 55 45 52 -7 =13.5 181
50 45 5 11.1 123 40 30 10 33.3 1,111
8C 120 -40 -33.3 1,111 40 8 =18 =31.0 963
38 44 -6 -13.6 186 25 25 0 .0 0
38 41 -3 -7.3 54 26 30 -4 -13.3 178
60 60 0 .0 0 28 23 5 21.7 473
50 45 5 11.1 123 40 41 -1 =2.4 6
65 62 3 4.8 23 50 40 10 25.0 625
23 23 0 .0 0 27 23 4 17.4 302
70 62 8 12.9 166 55 60 -5 =-8.3 69
52 48 4 8.3 69 14 17 -3 -17.6 311
40 32 7 21.2 450 10 9 1 111 123
18 20 -2 =10.0 100 13 13 0 0 0
65 57 8 14.0 197
48 53 -5 -9.4 89 Averages: 43,1 43,2 -.11 .42 254
40 39 1 2.6 7 Totals: 3,272 3,281 -9 32.0 19,314
38 48 -10 -20.8 434 0.674 std dev: 10.81%
45 a7 -2 =4.3 18 Mean: 11.10%
40 38 2 5.3 28 Avg. of absolutes: 13.04%
27 27 0 .0 0 1.000 std dev = 16.04%
43 4z 1 2.4 6 2.000 std dev = 32.08%
75 80 -5 =-6.3 39 Number of estimates = 76
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Hunting Group Calculation

A11 the information needed to
calculate what the author's hunting
group should look 1ike at various
ranges 1is now available. The raw
data is:

Arrow velocity = 180 ft/sec.

Launch accuracy = 2.0 mils at
1.0 standard deviations.

Range estimation accuracy =
16.04% of range at 1.0 standard
deviations.

The formules needed are:

ﬂni h = Eg sine Apoqyongs Ean #11-1
where '

Mhigh = Miss distance when
est?mated range is longer than
actual,

ER = error in range estimate
AR=Tonc = Angle of launch to hit
target &t estimated range.

:aow Ep sine Ap.p, Ean #11-2,
where

M " = miss distance when
es%1mated range is shorter than
actual.

Er = error in range estimate
Ap- = Angle of launch to hit
target at actual range.

In addition we need to know that the
following is true of standard
deviations:

0.674 includes 50.00% of all
events.
1,000 ircludes €8.25% of all
events,
2.000 includes 95.45% of all
events.

The shape of groups for 20, 40, 60,
and 80 vzrds will be computed at
0.674, 1,000 & 2.000 standard
deviations, First, the left/right
miss distances are computed from the
1.00 stancard deviation = 1.94 mils
results. Example: Miss at 2.00 std

deviations at 80 yards = 80 yds x
36"/yd x 1.94 / 1,000 = 5.17".

Std. Mils Left/right miss distances
dev. 20 yds 40 yds 60 yds 80 yds

0.674 1.30 0.94" 1.88" 2.82" 3.76"
1.000 1.93 1:39" 2.7%" 418" B
2.000 3.87 2.7  5is7" 8,36 11.15"

Note that all are radii, not
diameters. Note that all are lineal
relationships: Double the range;
double the error. Double  the
standard deviations; double the
error, Note that arrow velocity
does not enter the computation.
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Calculation of Low Misses:

Examole: Arrow velocity = 180 ft/sec.
£td, Percent Error in range estimate
cev. of Range 20 vds 40 yds 60 yds 80 yds
J.674 10.81% 2.16 4,32 6.49 8.65
: " 17.84 35,68 53.51 71.35
k " 2.3" 9,3 21,0 37.4"
' " 0.9" 1.9" 2. 8" 3.8"
" 3 3.2" 13" 23.8% 41.2%
1.000 16.04% 3.21 6.42 9.62 12.83
: ! 16.79 33.58 50.38 67.17
" 3.4" 13.8" 31.1" 55.5"
1.4" 2.8" a,2" 5.6
4.8" 16.6" 35.3" 61.1"
Sta Mils Left/right miss distances
dev 20 yds 40 yds 60 yds 80 yds
0.674 1.30 0.94" 1.88" 2.82" 3.76"
1.000 1.93 1.39"  2.,79" 4,18" 5.87"
z,000 3.87 2.79 5,57 8.36% 11.15"
z.000 32.08% 6.4z 12.83 19.25 25.66
5 " 13.58 27.17 48.75 54.34
' e 6.9" 27..6" 6z.2" 111.0%
" 1] 2.8" 5.6“ B'dll 11.2“
E " g,7" 33.2% 70.8" 122.2"
Correct launch angle = 1,709° 3,425° 5,153° 6.900°

o nmnn

o nonon

yds error.

yds estimated.

inches low due range.
inches due launch.
total miss low.

yds error.

yds estimated.

low due range error.
low due launch.
total miss low.

yards error,

yards estimated.

low due range error,
low due launch,
total miss low.

The calculation of error in estimate is simply range multiplied by percent
of rance. The estimated range is then the actual less the error. Next the
angle of Jlaunch which should be used for the actual range is computed.
Exampie:
by = %arcsin(Rg/Vz) = Larcsin(80yd x 3ft/yd x 32.2ft/sec?)/(180Ft/sec)?
" = Larcsin(0.239) = % x 13.8° = 6.900° (for 80 yards).
Next tre amount of the miss is computed (for 80 yards at 1.0 standard
deviaticn) using:
Mio“ = Ep sine A =R e Eqn #11-2,
= 15.83 yarﬁs sine 6.900° = 12.83 yds x 36"/yd x .120
= 55.5" Tow,
Firally, the launch error feor the same standard deviations zre added to the

error caused by range estimate error.
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Calculation of High Misses:

High misses are calculated differently because the formula for calculating
the miss distance uses the (incorrectly) estimated range rather than the
actual range. Otherwise the procedure is the same. Data is arranged as
follows:

Std. Percent Error in range estimate
dev. of Range 20 yds 40 yds 60 yds 80 yds

G.674 10.81% 2.16 4,32 6.49 8.65
4 » 22.16 44,32 66.49 88.65
! ! 1.89° 3.80° 5.72° 7.66°
" " 2.6" 10.3" 23.3" 41.5"
1 i 0.9" 1‘9" 2.8H 3‘8“
! ! 35" 2.2 26.,1" 45 ¥

yds error,

yds estimated.
actual launch angle.
high due range.
inches due launch.
total miss high.

sl 6.42 9.62 12,83
23.21 46.42 69.62 92.83

3 yds error,
3
3 " 1.98° 3.98° 5.99° 8.03°
4
1
5

yds estimated.
actual launch angle.
high due range.

high due launch.
total miss high.

1.000 16.04%

.0" 16.0" 36.1" 64.6"
'ali 2.8" 4'2“ 5.6“
.4" 18.8" 40.3" 70.2"

yards error.

yards estimated.
actual launch angle.
high due range error.
high due launch.
total miss high.

2.000 32.08% 6.42 12.83 19.25 25.66
" i 26,42 52.83 79.25 105,66

* " 2,26 4;53° 6.83° 9.12°
» ¥ 9.1" 36.5" 82.5" 146.4"
2.8" 5.6" 8.4" 111"
11.9" 42.1" 90.9" 157.5"

Compiling the data computed above results in the data tabulated in +hetable
which follows. Note that "Left" is entered but "Right" is omitted, as both
are identical.

Table 16-2 ... Miss Distances for Hunting Environment Groups

Std 20 yards 40 yards 60 yards 80 yards
Dev Left High Low Left High Low Left High Low Left High Low

674 0,9" 3.5% 3.3" 1.9" 12.2° 11.2" @2.8" 26.1” 23.9" 3.8" 45,3" 41.3"
1.00 1.4" &5.4% 4.8 2.8" 18.8% 16.7" 4.2" 40.3" 35.4% 5.6" 70.2" 61.3"
2.00 2.8" 11.9% 9.8" 5.6" 42.1" 33.4" 8.4 80.9" 70.8™ 11.1" 158" 123"
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The above data is plotted in Figure
16-2. There are a number of
extraordinary features shown in

Figure 16-2, such as:

1) The qroups have an amazing ratio

of vertical size to width. The
ratio gets bigger as range gets
longer. Specifically, the ratios
are about:

20 yds: 3.6 to 1. 40 yds: 6.3 to
60 yds: 9.0 to 1. 80 yds: 12.7 to

2) The groups show that high misses
are hicher than Tow misses are Tow.

Conclusions:

ratio of hunters' vertical
horizontal misses is
probably much greater than most
bowhunters realize. Every hunter
should study Figure 16-1

1. The
misses to

2. The bewhunter should spend
relatively more effort practicing
range estimation than he should
shooting arrows.

3. The bowhunter should use a
rangefinder while hunting. Any shot
of over 50 yards is a very "low

percentage"” shot unless the range is
known,

4, A vertical target, such as a
frontal view of a head-up deer, is a
big help in overcoming range
estimation errors. Although some
hunters don't like neck shots, the
author took great satisfaction in
dropping a goat with a shot which
severed the third neck vertebra.
Higher or Jlower would also have
severed vertebrae. Lower yet would
have been through the main body
cavity, Slightly left or right
would have cut jugular vanes.

5. A horizental target, such as a
squirrel on all-fours, 1is hard to
hit. The same squirrel when
standing or climbing is not such a

hard target to hit,

6. The "instinctive" shooter
probably has an advantage over the
sight shooter in the hunting
environment. He is estimating
distance as he draws and aims, but
his estimate need not be translated
into numbers. The pin-sight shooter
needs to take several steps, which
are:

a) Estimate the distance as
being "that far".

b) Translate "that far" into
numbers.

c) Find the pin sight
corresponding to the

translated number.
d) Put the pin on the target.
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Chapter 17 ... CALIBRATED FLIGHT SHOOTING

MAXIMUM RANGE vs TERMINAL VELOCITY vs LAUNCH VELOCITY

The maximum range that an arrow can be shot at sea level is published in
this chapter. As far as I know, this is the first time this data has been
computed and published. As soon as I make a statement l1ike that, someone will
show that the ancient Turks knew all about such things or that the U.S. Army
has been teaching such since before the Civil War. Fine, but at Tleast the
work published hereinafter is original.

TERMINAL VELOCITIES

An arrow's free-fall terminal velocity is the steady-state speed that it
will attain if dropped from an airplane. The terminal velocity is the most
meaningful number to describe an arrow's persistence (or lack of it) in
traveling through the air. It includes the arrow's weight and the arrow's
resistance. A heavy arrow will fall faster than a light arrow if their
exteriors are identical. Thus two seemingly identical arrows which do not
weigh the same will have different terminal velocities. The heavy arrow will
fall faster. As an example, the author converted his bow from standard length
to "overdraw". The o0ld, standard-length arrows were 2117 x 30" before I
shortened them to 27". New arrows were 2114 x 27". The new 2114 arrows look
identical to the old but shortened 2117 arrows and do have identical air
resistance characteristics. VYet the 2117 weighs more than the 2114 because
it's walls are 17/1000" thick compared to the 14/1000" thick for the 2114,
Terminal velocities for the two arrows are roughly:

220 ft/sec
209 ft/sec

2117 x 27" w (4) 4" fletches ... V,t
2114 x 27" w (4) 4" fletches ... V,t

It should be obvious that if both arrows were launched at the same speed and
the same angle, the heavier arrow would go farther.

By the same logic, two arrows which weigh the same but which have different
friction will fall at different speeds, the more streamlined falling faster.
As an example, two 2117 x 30" arrows having different amounts of fletching
will have terminal velocities approximately as follows:

230 fps
245 fps

2117 x 30" with (3) 5" fletches ... V,t
2117 x 30" with (3) 3" fletches ... V,t
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Author shooting
a 45# take-down
all-fiberqglass
recurve.

Author shooting
his 55# target
compound, a
Martin Cougar.

Author shooting
his 72# hunting
compound, a
Hoyt Rambo.



DETERMINATION OF TERMINAL VELOCITY

How do you ascertain an arrow's terminal velocity? The most straight-
forward way is to shoot it as far as it will go. Ascertain launch velocity
from an arrow speed measuring device at the local archery shop. Then enter
the chart published in this chapter with maximum range and launch velocity.
Read terminal velocity.

The next way is to compute the arrow's resistance to air flow as
described in the chapter on air resistance. Then weigh the arrow. Then use
the following formula to compute terminal velocity:

V,t = V,0 (W/D)1/1.85

Example: Arrow weighs 541 grains.
Calculated drag at 200 ft/sec is 418 grains.

V.t = 200 fps x (541/418)1/1:85 = 200 x 1,2940-541
= 200 x 1.150 = 230 fps.

The truly correct way to measure an arrow's terminal velocity is to
drop it cut of an airplane and measure it's speed upon hitting the ground.
Good luck. It is just because taking such a measurement is not practical
that I've published this chapter on how to ascertain the arrow's flight
characteristics by seeing how far it can be shot.

RANGE OF TERMINAL VELOCITIES:

The slowest arrow will be one with flu-flu fletching. I fired a 2117 x
30" arrow having six 4" long x 1" tall feathers from my 73# compound at
212 fps. The arrow went about 120 yards. Entering the chart yielded the
resulting terminal velocity of 96 ft/sec (= 65 mph). Others might put on
much more fluffy fletching, so a lower limit of half that seems reasonable.
Assume the slowest terminal velocity of any real arrow will be about 50
ft/sec (or 34 mph).

The fastest arrow will be a heavy, thin, short arrow with zero
fletching. Admiral Moffett tested just such an arrow in a wind tunnel in
the 1920's and found the resistance, without fletching, was 0.016 pounds.
This equals 112 grains. Test speed was 200 fps. Length was 26". Diameter
was 5/16". A heavy arrow of that size would weigh about 530 grains. Thus
the terminal velocity for this arrow would be:

V.terminal = V,test (W/D)(1/1.85) = 200 x (530/112)0-5% = 463 fps = 316 mph.
Thus I assumed that the fastest terminal velocity in real arrows would not

exceed 500 fps.
The range of terminal velocities for real arrows was thus assumed to be 50

to 500 ft/sec, or 34 to 341 mph.
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RANGE OF LAUNCH SPEEDS

The fastest launch speed to which I found reference in any of my
readings was in Hoyt/Easton's bow advertisement wherein they said, “Bob
Rhode used a pair of Contender limbs to power his 400 FPS plus experimental
Hoyt/Easton Flight Bow to set two new world records of 845 yards in regular
compound flight and 469 yards in Broadhead compound flight in the 70 1b.
weight class at the 1986 N.A.A. Flight Championships at Wendover, Utah."
Thus 450 fps was selected as the fastest launch.

DRAG-TO-WEIGHT RATIO

The ratio of an arrow's weight to it's drag is the ratio which
initially seems most pertinent. The drag-to-weight ratio and the launch-
velocity-to-terminal-velocity ratio are really telling the same story. The
two ratios are related as follows:

W/D = (V,t/V,0)18%  where W = weight
D = drag
V,t = velocity, terminal
V,o = velocity, launch.

I chose to work with velocities because the terminal velocity is such an
independent quantity. When describing a 2117 x 30 with (3) 5" fletches, I
found myself computing a whole slew of different drag values (depending upon
launch speed) and then trying to remember what Taunch speed was associated
with the drag value so calculated. It is much easier to simply remember
that the arrow's terminal velocity is, for instance, 230 ft/sec. The
arrow's terminal velocity stays the same regardless of how the arrow is used
or from which bow it is shot. An arrow's terminal velocity stays the same
regardless of launch angle or launch speed.

LAUNCH ANGLE

A launch angle of 45° would achieve the greatest range in the vacuum of
the moon. Real arrows fired on earth at sea level achieve maximum range
using angles of less than 45°, How much less? It depends upon how much
drag the arrow has and upon the launch speed. The "dirtiest" arrow computed
is one having a terminal velocity of 50 ft/sec, and the highest launch speed
computed is 450 ft/sec. This combination has a launch velocity to terminal
velocity ratio of 450/50 = 9; and the optimum launch angle for that
combination is 25°. Most arrows are fired with Vo/Vt ratios of 0.6 to l.l.
The optimum launch angle for Vo/Vt = 0.6 is 42°, For 1.1 it is about 40°.
Actually, the range achieved is very non-sensitive to precise launch angle.
In a friction-free environment, the mathematics show that the change of
range with change of launch angle is zero at 45°. In the real world with
friction, the same is nearly true.

The general idea is that the "cleaner" an arrow is, the closer to 45°
it should be shot. Ratios count, too, however. The faster an arrow is
shot, the lower it's optimum launch angle becomes. For instance, a flight
arrow having a terminal velocity of 300 ft/sec should be launched at 42° if
released at 200 ft/sec but should be Taunched at 38° if released at 400
ft/sec.
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CALCULATION OF THE DATA

The formulas for calculation of the trajectories of an arrow with
friction and with large launch angles was developed in the last half of
Chapter 8. Figure 8-1 shows a typical computer run output for a single
combination of launch velocity and terminal velocity. Launch angles of 39°,
40°, 41° & 42° were needed in order to ascertain which of those launch
angles yielded the maximum range. While it was at it, the computer kicked
out the initial draw-to-weight ratio, the hit-the-ground angles, velocities
and energies, plus the time of flight. A separate set of runs such as shown
in Figure 8-1 were made for every combination of launch speed and terminal
velocity,

THE DATA

Table 17-1, "Table of Maximum Ranges and Corresponding Launch Angles"
shows (across the top) terminal velocities from 50 fps to 500 fps plus one
column for an infinite terminal velocity. Down the left are launch
velocities from 125 ft/sec to 450 ft/sec. In the table, for any combination
of launch and terminal velocities, are given the maximum range and
corresponding launch angle.

Example #1: Launch velocity and range are known; find terminal velocity.

Launch velocity: V,0 = 175 ft/sec.
Range achieved: R,max = 229.0 yards.

Go down to V,0 = 175 and then right until R,max = 229.0 yards; thence up to
find V,t = 2560 ft/sec. Note that optimum angle for that shot would have
been 41.6°,

Example #2: Terminal velocity and range achieved are known; find launch
velocity.

Terminal velocity = 300 ft/sec.
Range achieved = 364.7 yards.

Go horizontally to V,t = 300 ft/sec. Then down to R,max = 364.7; thence to

the left to find V,o0 25 ft/sec = launch velocity. Note that optimum
launch angle was 41.3°.

PLOT OF THE DATA

In Figure 17-1, the data is plotted, with Taunch velocities on the y-
axis and maximum ranges on the x-axis, plotted against arrow's terminal
velocity.

200 ft/sec.
260 yards.

Example: Launch velocity
Maximum range

Enter chart at 200 fps on left and draw a horizontal line.
Enter chart at 260 yards on bottom and draw a vertical line.
Intersection shows arrow's terminal velocity was 226 ft/sec.
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ACCURACY OF THE DATA

The data was computed on the assumption that arrow friction varies as
the 1.85th power of velocity. This assumption is subject to review. It may
very well be true that the friction of real arrows vary between the 1.5th
power and the 2.0nd power, depending upon the arrow. Ultra-steamlined
arrows will tend toward the 1.5th power. Flu-flu-fletched arrows will tend
toward the 2nd power of speed. Most arrows will be near the 1.85th power.

There was no simple formula for computing the data. Rather, a computer
model had to be constructed using the formulas developed in Chapter 8,
"Trajectories with Friction", under the section, "Trajectories with Friction
and Large Launch Angles". The computer then computed multiple flights at
various launch angles. Inspection showed which angle yielded the longest
range.

The computer used was a Hewlett-Packard HP-41CV which uses mantissas
having 10 digits plus a 2-digit exponent of 10.

Initial runs indicated that breaking the flight up into increments of
0.05 seconds gave data accurcte to the nearest yard. Subsequently I found
that the flight had to be broken up into 0.02 second increments in order to
get answers accurate enough to ascertain the optimum launch angles. The
ranges computed with 0.02 second intervals were usually slightly (about 1
yard) longer than those computed at 0.05 second intervals. Even with 0.02
and then 0.01 second intervals, a few combinations came up with seemingly
inccrrect optimum launch angles. I presume that this is simply an anomaly
having to do with the number of digits in the mantissas and the number of
increments of the flight. It is possible that a2 main-frame computer using
more digits in each number would give slightly different results.

See the sample computer print-out, Figure 8-1 at the end of Chapter 8.
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GENERALIZED DATA

Engineer-scientists always like to find underlying universal parameters
to describe things. They are particularly fond of dimensionless
parameters. As I studied the data in the table of launch velocity vs
terminal velocity with resulting maximum ranges and optimum angles, I
noticed that certain ratios were trying to make themselves obvious. I
fooled around with various ratios and found to my great pleasure that a
single Tine could replace the multiple lines given in the preceeding chart,
The ratios were:

R/R,max = range ratio = maximum range achieved divided by maximum range
in a vacuum,

Vo/Vt = velocity ratio = launch velocity divided by arrow's terminal
velocity.

See Figure 17-2. The figure is simply a plot of the same data tabulated
before, except this time the numbers have been reduced to dimensionless
parameters., For instance, in the table is found:

,0 = 200 ft/sec

,t = 250 ft/sec
= 278.0 yards

, max = 414,1 yards = (V,o)zfg

lTaunch velocity
terminal velocity

From which the following can be calculated:

R/R,max = 278.0/414.1 = 0.6713 = range ratio
V,0/V,t = 200/250 = 0.800 = velocity ratio

The data when so reduced is plotted in Figure 17-2, "Range ratio versus

velocity ratio". Much to my great pleasure, the data all plotted on a
single line!

Page 17-8.



ALIDOTIA TYNIWYIL
8 L )

..... "

&

TIVS-33¥d + ALIDOTIA HINAVT = *pA/°A

- RN R FRA ) TR
n.._m.J\. _o..*zm_vw_wnch Dyl w.m.ammu\m

< 1 4 < 2 [ 0
L L L . 0
E S S S | s < e | O
- L ] ‘ - g ....... NGO
L il e 1
B T €0
b 1S'2= 57 yod - -
! 2(87- 3%
] T H0
: A vy
m.mﬂr.ounw. Yod - - A P A A gy T +.6°0
.—P.Oﬁ&)VI
5 .__- Q.O
TLlO
X180
%8170 =YOUYI 9NV MM bg°D of S0 = mw Yo4 dITvA - - - .Mmm ~-€LO'| = 2z~w_ T+ b0
T+ o7l

"1

FONVYY ZIYS-NOILNYF <~ FINVYH ‘XYW = """3/3
Page 17-9



TABLES 17-2A, 17-2B & 17-2C

The data shown in Table 17-1 is rearranged and shown again in Tables 17-
2A, 17-2B & 17-2C. In addition, data as to the remaining energy, velocity and
angle of hitting the ground are shown. The data is arranged according to the
ratio of launch velocity to arrow terminal velocity. The “"cleanest" shots are
first in Table 17.2; the "dirtiest" are last in Table 17-4. The very first
entry is for the most slick arrow (terminal velocity = 500 fps) fired at the
slowest Taunch velocity computed (125 fps). That ratio of 125/500 = 0.25 is
the closest to & friction-free shot.

"Launch angle" is that angle which the computer found to yield the
greatest range. The tabulated launch angles start near 45° and get smaller.
That they do not get smaller uniformly is due to computer errors.

"Range ratio" is the ratio of maximum achievable horizontal range
divided by the range which an arrow fired at 45° above horizontal without
friction would achieve. The friction-free ranges are shown in Table 17-1 in
the far right column labeled_ "zero drag shot". The formula for friction-
free range is: R = V2/g (Eqn #6-4),

"Hit energy" is new data, not shown in Table 17-1. It is the amount of
energy the arrow has upon hitting the ground.

Hit velocity is not shown, as it would be redundant. Hit velocity is
the square root of hit energy. If the hit energy is 90%, the hit velocity
is 94,9% of the launch velocity, because the square root of .900 is .949,
Example: The hit energy of the 125 fps launch, 500 fps terminal arrow is
shown to be 88,9%. wgat is the hit velocity?

Answer: 125 x (.889)% = ,943 x 125 = 118 fps.

"Hit angle" is the angle at which the arrow hits the ground. They
start at -45° (for a "clean" arrow launched at +43.5°) to -72° (for a
"dirty" arrow launched at +24°),

"Flight time" is tabulated as a percent of the length of time the same
arrow would have stayed airborne in a friction-free environment were it
fired at the same angle and with the same launch speed. Note that the
comparison is made to an arrow fired at the same angle, not to an arrow
fired at +45°, The formula for friction-free flight time is:

T = (2V/g) sine A. (Equation #6-5).
The time of flight for the first entry was, then:

-
-

99% x (2 x 125fps / 32.2 fpss) sine 43.5°
.99 x (250 sec /32.2) x .688 = 5.3 seconds.
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Table 17=-2A

Tabulation of

Computer

Mode 1

for

launch-velocity-to-terminal-velocity ratios of 0.25 to 0.889

Vo/Vt Arrow Launch Launch

ratio Vt Vo
(fps) (fps)

.250 500 125
.278 450 125
. 300 500 150
i 400 125
333 450 150
. 350 500 175
«357 350 125
305 400 150
. 389 450 175
.400 500 200
417 300 125
.429 350 150
.438 400 175
444 450 200
. 450 500 225
. 500 350 175
. 500 300 150
.500 500 250
.500 400 200
. 500 450 225
.500 250 128
« 9856 450 250
.563 400 225
.571 250 200
.583 300 175
.600 500 300
.600 250 150
.625 200 125
#6258 400 250
.643 350 225
.667 300 200
.667 450 300
.700 250 175
.700 500 350
.714 350 250
«7.50 300 225
+750 200 150
.750 400 300
.778 450 350
.800 250 200
.800 500 400
.833 300 250
«833 150 125
857 350 300
.875 400 350
.875 200 175
.889 450 400
Formula: R/Rmax,=

R

Angle
i

5
5

0
0
5
5
5
5
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0

Actual

Range
(yds)

152.8
150.9
215,7
148.0
211.0
285.3
144.9
207.0
279.2
362.0
140.0
200.0
271,58
353..1
445.6
261.3
192.0
533,2
341.0
431.0
133.0
515.0
414.3
326.0
247.0
720.0
179.8
123.0
491.0
393.1
306.0
687.1
229.0
915.0
462.0
364.7
162.1
648.5
865.0
277.9

1111.8

424.0
106.2
600.8
807.0
201.0

1044.,5
1.073 - Vo/2Vt

(V2/g)(1.073 - Vo/2Vt)
Formula fits above data with average absolute error

Range
Ratio
(%)

5%
3%
6%
5%
6%
0%
6%
9%
1%
a%
6%
9%
6%
3%
0%
a%

4%
4%
4%
2%
B
6%
1%
%
9%
.3%
2%
.0%

9%

.0%
.9%
7%
2%
2%

4%

.5%
.6%

7%

2%
‘1%

1%

.5%
%
IS%

6%
a%

1%

Hit

energy an

(%)

88.9%
86.9%
85.0%
84.0%
82.0%
81.2%
80.4%
79.0%
78.1%
77.0%
76.0%
75.0%
74,2%
73.4%
72.9%
68.9%
69.0%
69.0%
69.0%
68.9%
68.9%
65.0%
64.1%
63.0%
62.5%
61.3%
61.1%
59.5%
59.0%
58.1%
56.5%
56.6%
54,2%
54,2%
53.0%
50.9%
51.1%
51.1%
49.,4%
48.0%
48,0%
46.1%
46.1%
45.0%
44.0%
43.9%
43.2%

Flight
Time

(%)

99%
98%
98%
98%
97%
97%
97%
97%
97%
97%
95%
96%
96%
96%
96%
95%
95%
95%
95%
95%
95%
94%
94%
94%
93%
93%
93%
93%
93%
93%
92%
92%
91%
91%
91%
91%
90%
90%
90%
89%
89%
89%
89%
88%
88%
88%
88%

0.18%.



Table 17=-2B susi5i:s Tabulation of Computer Model Data for

launch=-velocity-to-terminal-velocity ratios of 0.9 to 2:5
Vo/Vt Arrow Launch Launch Actual Range Hit Hit Flight
ratio Vt Vo Angle Range Ratio energy angle Time
(fps)  (fps) (°) (yds) (%) (%) (°) (%)
.900 500 450 41.0° 1311:.3 62.6% 42.7% -53° 88%
.900 250 225 39.5° 327.6 62.5% 42.4% -51° 88%
1.000 200 200 40.0° 241.3 58.3% 37.9% -53° 86%
1.000 300 300 39.0° 542.5 58.1% 37.7% =52° 86%
1.000 350 350 40.0° 737.0 58.1% 37.9% -53° 86%
1.000 400 400 39.0° 964.5 58.2% a7:1% -52° 86%
1.000 150 150 41.0° 135.7 58.3% 38.1% -54° 86%
1.000 250 250 40.5° 377.0 58.3% 38.0% -54° 86%
1.000 450 450 40.0° 1221.5 58.3% 37.9% -53° 86%
1.125 200 225 38.0° 279.4 §3.3% 32.6% -53° 84%
1.125 400 450 39.0% 1118.,7 53.4% 32.8% -54° 84%
1.143 350 400 39.5° 872.4 52.7% 32.3% -55° 83%
1.167 150 175 38.0° 164.2 51.8% 31.2% =53° 83%
1.167 300 350 40.0° 657.0 51.8% 32.0% -56° 83%
1.200 250 300 39.3° 471.6 50.6% 30.4% -55° 82%
1.250 200 250 39.0° 316.0 48.8% 28.8% -56° 81%
1.250 100 125 40.0° 79.0 48.8% 29.0% -57° 81%
1.286 350 450 38.8° 1001.5 47.8% 27.8% -56° 80%
1.333 150 200 38.0° 191.0 46.1% 26.0% =55° 80%
1.333 300 400 38.0° 766.7 46.3% 26.3% -56° 80%
1.400 250 350 38.0° 561.0 44,2% 24.6% -57° 79%
1.500 150 225 37.0" 217 .3 41.5% 22.3% -57° 77%
1.500 200 300 37.0° 386.7 41.5% 22.4% -57° 78%
1.500 300 450 37.:5° 870.4 41.5% 22.4% -57° 77%
1.500 100 150 38.0° 96.6 41.5% 22.4% -58° 77%
1.600 250 400 37.0° 645.5 39.0% 20.3% -58° 75%
1.667 75 125 36.0° 60.3 37.3% 19.1% -58° 75%
1.667 150 250 36.0° 241.0 37.2% 19.0% -58° 74%
1.750 200 350 36.0° 449.0 35.4% 17..7% -58° 73%
1.750 100 175 36.0° 112.3 35.4% 17.7% -58° 73%
1.800 250 450 36:5° 723.8 34.5% 17.1% -60° 72%
2.000 100 200 35.5" 12740 30.7% 14.5% -60° 69%
2.000 150 300 34,0° 286.3 30.7% 14.3% -59° 68%
2.000 200 400 35.0° 509.9 30.8% 14.4% -60° 70%
2.000 75 150 35.0° 71.4 30.7% 14.4% -60° 70%
2.250 100 225 34,0° 140.6 26.8% 11.9% -61° 67%
2.250 200 450 34.0° 563.6 26.9% 11.9% -61° 67%
2.333 75 175 35.0° 81.0 25.5% 10.33 -63° 65%
2.333 150 350 35.0° 325.0 25.6% 11.3% -63° 65%
2.500 100 250 34.0° 152.0 23.5% 10.0% -63° 62%
2.500 50 125 34.0° 38.1 23.6% 10.0% -63° 63%

— (Y \ O
Formula is: R/Rmax = [.58¢& (VE)

Formula fits above data with average absclute error = 0.35%.
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Table 17=2C ..saws Tabulation of- Computer Model Data for
launch-velocity-to-terminal-velocity ratios of 2.51 to 9,00

Vo/Vt Arrow Launch Launch Actual Range Hit Hit Flight
ratio vVt Vo Angle Range Ratio Energy Angle Time

(fps)  (fps) (°)  (yds) (%) (%) (°) (%)
2.667 75 200 333 90.3 el 9.0 =61.5 62
2.667 150 400 32.0 362.5 21,9 8.9 -61.8 62
3.000 50 150 33.0 43.0 18,5 7.4 -64.9 58
3.000 75 225 33,0 98.4 18.8 7.4 -65.1 58
3.000 100 300 33:0 175.2 18.8 7.4 -65.0 58
3.000 150 450 32.0 395.1 18.8 7.4 -63.9 59
34333 75 250 31.0 104.0 16.1 6.2 -64.3 55
3.500 50 1715 30.5 48.3 15.2 5.6 =64.5 53
3.500 100 350 29.5 194.7 15.4 5.5 =63.7 55
4.000 50 200 30.0 52.5 127 4.4 -66.4 51
4,000 15 300 30.0 119.0 12.8 4.4 -66.5 51
4,000 100 400 30.0 212.0 12.8 4.4 -66.5 51
4,500 50 225 29.0 86,3 10.7 3.6 -67.1 a8
4,500 100 450 28.0 227.6 10.9 3.5 =66.1 a8
4,667 75 350 28.0 128.0 10.1 3.4 -66.5 46
5.000 50 250 28.0 59.8 9.2 2.9 =-67.0 45
85333 15 400 27.0 140.4 8.5 2.6 =67.5 a4
6.000 50 300 27.0 65.9 7.1 2:1 =69,1 41
6.000 75 450 26.5 149.3 7:1 2.1 -68.5 41
7.000 50 350 27.0 T1:1 5.6 1.6 =71.2 37
8.000 50 400 25.0 75.6 4.6 1.3 =-71.6 35
g.000 50 450 24.0 79,7 3.8 1.0 =-72.0 33

Ve L
~ (- 1.8)%

Formula is: R/Rmax = Q.56¢€ ¢

Formule fits above data with average absolute error = 0.97%.
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THE_FORMULAS

At the bottom of Tables 17-2A, 17-2B & 17-2C are formulas which fit the
range data. There is a different formula for each table. Using the formula,
the range data can be computed directly without referring to the tabulated
data.

The formulas were found after noting that the data representing all these
millions of computer calculations fell on a single 1ine. I looked for a
single formula to replace the single line. Much to my amazement, I found that
a8 straight-l1ine formula fit about half of the data perfectly! The straight
1ine formula is applicable for velocity ratios of 0.25 to 0.90. The formula
is:

R/R,max = 1,073 - V,0/2V,t i Equation 17-1
Example:

My 2117 x 30" arrows with (3) 5" fletch have terminal velocities of
about: V,t = 230 ft/sec. I Tlaunch it at about: Vo = 200 ft/sec. Therefore
V,0/V,t = 200/230 = 0.870, which is within the formula's range of validity.
The range ratio, therefore is:

R/R,max = ]20?3 - 0.870/2 = }.073 - 0.435 = 0.638.
R,max = V,0%/g = (200ft/sec)“/32.2ft/sec = 1242 ft = 414 yards
R =0.638 x R,max = 0.638 x 414 yards = 264 yards.

Thus the predicted range that this bow can shoot this arrow is 264 yards.

The fact of the matter is, the arrow does go 264 yards, and I conclude
therefrom that the arrow's terminal velocity is 230 ft/sec.

The curve fits the computer-generated data with accuracy limits of +0.36% to -
0.41% and with an average absolute accuracy of 0.18%. See Table 17-2A,
"Tabulation of Data for Ve/Vt = 0.25 to 0.89.

The portion of the graph where Vo/Vt is greater than 0.9 is definitely
a curve. | fished around for a formula which would fit and finally settled
upon two formulas, one for Vo/Vt = 0.9 to 2.5 and one for Vo/Vt = 2.51 to

9.0. The first formula is: (V'o o.71
- ()

R/R,max = [, 574 & .... Equation 17-2
where e = 2.71828
valid for V,0/V,t = 0.9 to 2.5

The curve fits the computer-generated data with accuracy 1imits of +1.00% to
-1.22% and with an average absolute accuracy of 0.45%. See Table 17-2B,
“Tabulation of Data for Vo/Vt = 0.9 to 2.5."
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Similarly, for the range of 2.51 to g.q; I fished around and settled upon:
—(Xo _ z
R/R,max = 0!56e t 1'8) .... Equation 17-3

where e = 2.71828
valid for V,o0/V,t = 2.51 to 9.0,

The curve fits the computer-generated data with accuracy limits of +2.33% to -

1.25% and with an average absolute accuracy of 1.8%. See Table 17-2C,
"Tabulation of Data for Vo/Vt = 2.51 to 9.0."

OPTIMUM LAUNCH ANGLES VERSUS VELOCITY RATIOS

A study of the data and an averaging of it yields the following
aproximate relationship between optimum launch angles and velocity ratios:

Vo/Vt = 0.1 0.3 0.5 0.7 0.9 1,0 1.2 1.4 1.6 1.7 2.0 2.4 2.7 3.0

Ao = 45° 44° 43° 42° 41° 40° 39° 38° 37° 36° 35° 34° 33° 32°

Vo/Vt = 3.5 4.0 4.5 5.1 6.0 7.F 8.5 = Taunch velocity/terminal velocity.
Ao = 31° 30° 29° 28° 27° 26° 25° = launch angle for maximum range.

Example: I analyzed Bob Rhode's 469 yard broadhead shot at a launch
velocity of 400 fps and decided that the arrow's terminal velocity was 187
fps. The ratio is: 400/187 = 2.14. The above chart says, then, that the
optimum launch angle for that shot would have been 35°. His flight arrow,
which went 845 yards and which therefore had a terminal velocity of 337 fps,
would have the ratio 400/337 = 1.19. From the chart, the optimum launch
angle would have been 39°. Note that the "“cleaner" flight arrow is best
fired at closer to 45° than the "dirty" broadhead. "Clean" and "dirty" as
used here are taken from aircraft terminology where "dirty" means that flaps
and landing gear are down, whereas "clean" means flaps and gear are up.

GRAPHIC DISPLAY OF DATA

Figure 17-3, "Flight Shooting Angles and Ratios", displays all of the
data in dimensionless form. The horizontal axis is the velocity ratio.
Most archery is done with this ratio near 1.0. To get a feel for what a
velocity ratio of 1.0 represents, it is the situation which prevails if you
shoot an arrow straight down (as off of Yosemite's Glacier Point) and the
arrow neither speeds up nor slows down. If the arrow speeds up after being
shot straight down, it's velocity ratio is less than one. If it slows down,
it is more than 1.0.

"Launch Angle" is the angle at which the arrow must be
launched in order to achieve maximum range.

"Arrival Angle" is the angle at which the arrow will hit the
ground.

"Duration of Flight" is how long the arrow stays up compared to an
arrow shot in a friction-free environment.

"Arrival velocity" is the speed upon arrival compared to launch speed.

"Range" is actual range compared to an arrow shot at 45° in a friction-
free environment.,

"Energy" is the energy remaining compared to energy at launch.
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WIND CORRECTIONS

Wind obviously makes a difference, particularly when shooting for maximum
range. The question is, how much difference? Table 17-3, "Wind Corrections
to Maximum Range Flight Shots" tabulates the answers for two arrows fired at
two velocities. The two arrows where those whose free fall velocities
bracketed those of my own hunting arrows. My 2117 x 30" with (3) 5" spiral
plastic vanes with field tips have terminal velocities around 230 fps. The
arrows chosen had terminal velocities of 200 & 250 fps. The launch
velocities were 150 and 200 fps. The results surprised me. The
calculations were made for headwinds and tailwinds only. Cross winds were
not computed. Results can be summarized as follows:

Conclusions:
Headwind and tailwind corrections are directly proportional to wind speed.

With a launch velocity of 200 fps, range changes about 1% yard per mph.
With a launch velocity of 150 fps, range changes about 1 yard per mph.

Arrow behavior in wind

At the instant following launch the arrow aligns itself with the relative
wind. A new angle of flight is immediately set up which is different than the
launch angle, unless there is no wind. Also, immediately a new "airspeed" is
established which is faster than launch speed if there is a headwind. If a
tailwind, airspeed will be slower than launch speed. The phrase "airspeed"
was borrowed from the aviation world. The arrow's flight with respect to the
air is exactly as though the arrow were launched in calm air but with the
post-alignment angle and post-launch airspeed.

The concept of alignment can be better understood by visualizing shooting
downwind 45° above horizontal with such a strong tailwind that wind speed
equaled the horizontal component of arrow speed. This would require a
96 mph wind for an arrow launched at 200 fps. The arrow would immediately
align itself to aim straight up. The relative wind as experienced by the
arrow would be vertical only and equal to the vertical component of launch
velocity. To compute this arrow's flight, the flight of a no-wind arrow
fired straight up at a velocity equal to launch velocity multiplied by the
cosine of 45° would apply. The arrow would return to earth downwind a
distance equal to wind speed multiplied by time aloft.

The calculation of the post-launch angles and airspeeds is as shown in
Figure 17-4, "Headwind Diagram" and Figure 17-5, "Tailwind Diagram".
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WIND CORRECTIONS TO MAXIMUM RANGE FLIGHT SHOTS
ﬁ_——————-————_—

Head Air Initial Time of Travel Air Wind Total YARDS/
wind speed angle flight thru air movement Result range MPH
(mph) (fps) (deg) (sec) (yards) (yards) (yards) (yards)(yd/mph)

Terminal Velocity = 250 fps; Launch velocity = 200 ft/sec.

TV/LV = 1,25 Zero friction range = 414 yards
30 235 35 7.28 339 -107 -46 232 1.5
20 223 37 1:37 321 -72 -29 249 1.8
10 211 39 137 299 -36 -15 263 1.5
5 206 41 7.39 288 -18 -8 270 1.6
0 200 42 7.44 278 0 0 278
-10 189 45 7.45 255 36 13 291 1.3
=20 179 48 751 232 73 27 305 1.4
=30 170 52 7453 207 110 39 317 | W
-40 161 56 757 182 148 52 330 1.3
Terminal Velocity = 200 fps; Launch velocity = 200 ft/sec.
TV/LV = 1.0 Zero friction range = 414 yards
30 236 32 6.55 287 -96 =49 191 1.6
20 224 34 6.62 273 =65 -32 208 1.6
10 212 36 6.64 257 -32 =15 225 1.5
5 206 38 6.70 249 -16 -7 233 1.5
0 200 39 240 0 0 240
-10 189 42 6.78 224 33 17 257 1.7
-20 178 45 6.79 204 66 30 270 1.5
-30 168 48 6.85 186 100 46 286 1.5
-40 159 52 6.93 166 136 62 302 1.5
Terminal Velocity = 250 fps; Launch velocity = 150 ft/sec.
TV/LV = 0.6 Zero friction range = 233 yards
30 185 34 5.81 238 -85 -26 153 9
10 161 39 5.89 200 -29 -8 171 .8
0 150 43 5.90 179 0 0 179
-10 140 47 5.97 159 29 9 188 .9
=30 122 57 5.99 114 88 23 202 .8
Terminal Velocity = 200 fps; Launch velocity = 150 ft/sec.
TV/LV = 1,333 Zero friction range = 233 yards
30 185 32 5.40 209 -79 -32 130 3 %
20 173 35 5.45 194 =53 =21 141 :
10 161 38 5.47 178 -27 -11 151 1.}
0 162 41 5.53 162 0 0 162
-10 139 45 5.55 144 27 9 171 .9
-20 129 50 5.60 126 55 19 181 .9
=30 120 55 5.62 106 82 26 188 .9
=60 102 76 5.74 42 168 48 210 .8
=77 98 89,85 5.73 0 216 54 216 .7
Table 17-3 ... Wind Corrections to Maximum Range Flight Shots
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Symbols:

Angle of adjustment

Angle of flight

Angle of launch

Velocity, airspeed
Velocity, horizontal
Velocity, original launch
Velocity, vertical
Velocity, wind

—=— DD D
T <O T O Hho

mmw nmwnnmnna

Known :

42°
200 ft/sec.
= +30 mph x 5280 ft/mile / 3600 sec/hr = 44.0 ft/sec

Launch angle = Ao
Launch velocity = Vo
Vw

non

Tailwind =

Find:

Initial airspeed = Va
Post-alignment launch angle = Aes &
Amount of angular change to align with airstream = Ay
Solution:

lst: Find vertical component of launch speed:

Vy & VO sine Ao = 200 ft/sec sine 42° = 200 x 0.669 = 133.8 fps.

2nd: Find horizontal component of launcy velocity:

Vh = Vo cos Ao = 200 ft/sec cosine 41° = 200 x 0.743 = 148.6 fps.

3rd: Find horizontal component of airspeed:

Vp # ¥, = (148.6 + 44.0) fps = 192.6 fps.

4th: Find airspeed:

V.2 = v2 4 (v + V)% = 133.82 + 192,62 = 17,909 + 37,106 = 55,015
Vi = 235 ft/sec.

5th: Find angle after alignment:

Af = arctan va/th + vw) = arctan (133.8/192.6) = arctan 0.695 = 35°,

6th: Find alignment angle:

Ay = Ag = Ay = 35° - 42° = -7°,

Figure 17-4 ... Headwind Diagram.
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Symbols: A

Aa = Angle of adjustment iﬂfﬂ
Af = Angle of flight st
Ao = Angle of launch i
V, = Velocity, airspeed / I
Vi, = Velocity, horizontal P s N
Vo, = Velocity, original launch A |
V, = Velocity, vertical e - I\
Vy = Velocity, wind AW isicasran)

/w -—"/}»
Known: —— BN
Launch angle = = 42°

= 200 ft/sec.

-40 mph x 5280 ft/mile / 3600 sec/hr = -58.7 ft/sec

A0
Launch velocity = Vo
Tailwind = vw

Find:

Initial airspeed = Va
Post-alignment launch angle = As, &
Amount of angular change to align with airstream = A,
Solution:

Ist: Find vertical component of launch speed:

Vy = Vo, sine A, = 200 ft/sec sine 42° = 200 x 0.669 = 133.8 fps.

2nd: Find horizontal component of launch velocity:

Vp, = Vo cos Ao = 200 ft/sec cosine 41° = 200 x 0.743 = 148.6 fps.

3rd: Find horizontal component of airspeed:

Vp + ¥, = (148.6 - 58.7) fps = 89.9 fps.

4th: Find airspeed:

V2= v, 2+ (v, +V,)? = 133.82 + 89,92 = 17,909 + 8,088 = 25,997

v, = 161 ft/sec.

5th: Find angle after alignment:

As = arctan (VV/(Uh - Vw) = arctan (133.8/89.9) = arctan 1.49 = 56°,

6th: Find alignment angle:

Ay = Ap = Ay = 56° - 42° = +14°,

Figure 17-5 ... Tailwind Diagram.
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Net effect of tailwind &/or headwind

After computing the post-alignment windspeed and angle, a computer run
had to be made for that windspeed and launch angle. The computer run
ignores wind. The results indicate how far the arrow would have traveled
had there been no wind, which is the same distance it actually travels with
respect to the air through which it travels. Then the distance the air mass
traveled during the flight is either added or subtracted. The results are
tablulated in Table 17-3, "Wind Corrections to Maximum Range Flight Shots".

Launch angle adjustment for headwind or tailwind

The optimum launch angle for maximum range is the same regardless of
wind!

My intuition told me that the optimum angle would be lower in a
headwind and higher in a tailwind. The computer insisted that the maximum
range is achieved with the same launch angle (prior to alignment) regardless
of wind. So much for intuition.

Friction=free wind corrections

It is contradictory to talk about wind and zero friction at the same
time. Yet the analysis is applicable. The wind is assumed to exist to the
extent that it can steer the arrow yet not slow it down. And the arrow's
path can be thought of as passing through a mass of friction-free air which
transports the arrow. The effect on maximum achievable range is calcualted
as follows:

Launch velocity 212 ft/sec.

Launch angle = 45°,
Vertical component = 212 fps x sine 45° = 212 x .707 = 149.9 fps
Horiz. component = 212 fps_x cos 45° + 20 mph x 1,47 = 179.2 fps
Airspeed = (149.92 + 179.22)% = 233.7 fps.
Angle = argtan (149.9fps/179.2fps) = arctan 0.836 = 39,9°
Range = (V¢/g),.sin (2A) .... Equation #6-9.

= (233.72/32.2) sin (2 x 39.9°) = 1,668.9 ft
Time aloft = (2V sin A)/g ... Equation #6-5

= (2 x 233.7fps sin 39.9)/32.2fpss = 9.3 sec

Distance air moved during flight = 9.3 x 20 x 1,47 = 273.1ft.
Net distance made ggod = 1,668.9 ft - 273.1 ft = 1,395.8 ft.
Zero wind range = V¢/g, Egn. #6-4 = 212°/32.2 = 1,395.8 ft

Loss of range due to headwind 0 ft

This result should not surprise us. The only reason to conduct this
calculation is to prove that the procedure is correct.
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DRAG MEASUREMENTS

Trying to identify the drag of
an earrow is frustrating. Admiral
Moffett had the benefit of a wind
turrel; yet the data he obtained was
sucject to a lot of interpretation
because a fixed arrow in a wind
tunnel 1is not the same as a free
flying arrow. For one thing, the
arrow is not free to rotate and thus
the fletching's "parachute" drag is
much different. For another thing,
purccsing and/or fishtailing doesn't
rngcoer ‘rnoa wind tunnel. Three ways
cf testirig drag occur to me.

Wind Tunnel

Cre way would be to build a
miniature wind tunnel with upward
airflow of adjustable velocity., Ry
adjustinag velocity until the test
arrow was at "terminal" velocity,
the crac would be equal to the
arrow's weight. There are lots of
problems with this idea, though.
The first would be that of keeping
the arrow in the center of the
airstream, Another would be that
the test velocity would be
significantly faster than the
arrow's typical application speed.
Finally, purposing and fishtailing
woulcd not prevail.

Arrival Groups

Shooting arrows which are
identiceal except for specific
differences, such as blunt tip
versus bullet tip, and then
measuring the differences in their
arrival heights can theoretically be
Lsed tc back-compute drag dif-
fererces, The major trouble with
this procedure is that a tremendous
number of arrows have to be shot
before ar accurate assessment of the
difference in their arrival points
can e known with confidence. Fer

instance, I tried shooting 2117 x
30" arrows at 173 fps from 30 yards
with blunts and with bullet tips.
Predicted difference 1in arrival
height was 1.24"., After shooting
160 arrows, no clear pattern
developed.

Arrow Meters

Shooting through an arrow
velocity measuring device 1is an
excellent procedure. Shoot first at
zero range to ascertain launch
velocity. Shoot next at as far as
reasonable, say 30 to 100 yards, to
ascertain arrival velocity. Too far
a distance is bad because changes in
trajectory elevations complicate the
back-calculation of velocity. Too
short a distance results in not
enough velocity loss. The velocity
loss needs to be large compared to
the variations in measured
velocities. The meter I used varied
by about 3 ft/sec in launch
velocity. For reasonable accuracy,
therefore, it would be necessary to
shoot far enough that velocity loss
would be at least ten times that
much, or 30 fps. Data tabulated in
Table 8-1 for a 200 fps arrow shows
that 90 yards is about right for
reducing velocity to 170 fps., I've
not taken data using this procedure
yet.

Extreme Range

Shooting arrows as far as they
will go can tell a lot about an
arrow's drag. The arrow that goes
farthest obviously has less drag.
Putting a number on that difference
is not easy, however. The flight of
an arrow shot to maximum range may
be different, too, because purposing
and fishtailing will not continue
throughout the flight.
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Launch  velocity has to Dbe
known. The easiest way to ascertain
launch speed is to use an arrow
velocity meter. Next choice is a
careful calculation based on sight
pin spacing.

The 1lack of any published data
on how far a real arrow should
travel <seemed to me to be quite a
vacuum, so I've compiled that data
from weeks of computer simulations
of arrow flights with friction,
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